Data Engineering and Big Data jobs

What We Do

Processing Big Data has become crucial to countless businesses. Those who decide to pursue a career within Big Data face complex development challenges, too tough for relational database systems. After all, there is no Data Science without Data Engineers.

Whilst businesses may have vast quantities of data at the ready, it holds no real value unless it can be stored, harnessed and utilised. It’s estimated that most UK companies have at least 100 terabytes of data stored which could be used for various purposes around the business, as well as newly accessible hard-to-process sources such as web data, image data, and social media data. 

This is where those who work in Data Engineering become extremely valuable, as they develop Data Platforms that allow this kind of volume to be processed and used by Data Scientists and analysts across the business.

Whether you are a company looking to build a data platform for advanced analytics, or you are a candidate who can build systems and applications to process vast, complex data sources, Harnham are here to help. 

Technical skills: AWS, Google Cloud Platform and Azure, Spark, Hadoop, Java, Scala, Python

Latest Jobs

Salary

£82000 - £105000 per annum + Additional benefits

Location

London

Description

This role involves the opportunity to work at one of the largest tech brands in London

Salary

£50000 - £65000 per annum

Location

City of London, London

Description

An opportunity for a Python data engineer with experience with Azure who wants to deliver the data for advanced analytics.

Salary

US$243850 - US$268235 per annum

Location

Minneapolis, Minnesota

Description

Vice President of Engineering

Salary

£50000 - £60000 per annum

Location

City of London, London

Description

One of the UK's top 75 small companies to work for is looking for a data engineer to help them on their mission to improve lives of children across the UK.

Salary

£128000 - £129000 per annum + Additional Benefits

Location

London

Description

I am currently working with an IoT Start up within the automotive industry looking for a technical lead.

Salary

£40000 - £55000 per annum

Location

London

Description

Join a Top UK Start-up as a Business Intelligence Manager where you will play a key role in building comprehensive reporting suites in Tableau

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Integrate Your Data And Business Strategies For Success

Why You Need To Integrate Your Data and Business Strategies

United we stand, together we fall. Not too put too fine a point to it, but how your business and data strategies align are integral to your business. Today’s world is about change, being able to pivot toward new strategies, and being open to trying new things. Consider this: the “mom-and-pop” shop is back and it is flourishing. Younger generations of farmers are returning to their family farms when they graduate and they’re bringing new knowledge with them. And the makerspace, freelance, and gig economies are thriving. These businesses are learning how to work with technology and align their Data Strategy with their Business strategy. Some legacy enterprises are taking notice. Others are missing the mark. Consumers may have changed how they want to shop and learn about services and products, but the services they want and expect haven’t changed that much which is why it’s more important than ever to “know your customer.”  3 Key Elements of Integrated Strategies While there are a number of things to take into consideration as you align your strategies, these three key elements can help get you started. 1. Understand the key elements of Business Strategy. 2. Apply innovation strategy to business objectives. 3. Determine key elements of your Data Strategy for use in a real-world scenario. Understand the key elements of business strategy  A business strategy encapsulates two main ideas; cost advantage versus competition. The cost advantage includes costs and other resources, identification and awareness of strengths, weaknesses, and competition. Competitive advantage happens when you’ve done your market research and can show what makes you different from any other provider with similar goods and services. This is the time you might perform a SWOT (strengths, weaknesses, opportunity, and threat) analysis of your business. It’s helpful to include your mission and vision statements, objectives, core values, risk tolerance, and understanding trends in your business. Apply Innovation Strategy to Business Objectives Ideas and innovation flow when you and your business understand your customers and are able to easily shift into new things. Think R&D into Bioinformatics, automated tasks into AI, or a platform such as streaming services to help sell services such as insurance. Laying the groundwork to apply innovation strategies to your business objectives follow these ideas: Identify your business objectives by asking questions.Assess the budget and personnel resources and develop a budget strategy.Test the market to determine what issues will or need to be solved and understand how this innovation will benefit your overall strategy. If you’re working on a Data initiative to integrate into your Business strategy, one of the key elements is to determine how those changes may affect your business. Determine Key Elements of Data Strategy for Use in Real-World Scenarios As you work on developing your Data Strategy, it’s important to consider all the elements required to ensure success. So, what do you need to take into consideration when working on this type of strategy? Here are some things to consider as you develop your framework. Determine your business needs and their current state.Determine what works and what can be improved upon if there is a technology improvement or process.Evaluate your Data from sales, profit, and evaluate your progress.}Develop an action plan. Many businesses don’t incorporate just one type of Data into their strategy. They consider the potential impact of technologies such as Machine Learning, Predictive and Data Analytics, and other Big Data Strategies to drive improvements when it comes to decision making. They understand these Data-driven insights can help them improve or solve their most critical problems. There is a caveat, however, and it is how you collect the information for real-world scenarios. Certain requirements are in place for a reason and they ensure only relevant Data is collected. This is done by formulating “predictive models” and necessary information to operate and determine whether your case will be something to be done over time or if it’s something brand new to consider when looking at real-time access. One Final Thought… Data-centric organisations have a distinct advantage over their competition. The information gained from collecting and analysing to understanding their customers can offer great insight as to what’s working and what isn’t. Integrating your Business Strategy with a Data Strategy can offer you a more well-rounded understanding of the customers you serve and can ultimately, help you to serve them better; now and in the future. Disruptive business models from this way of thinking can also foster growth and lead to innovative changes in your marketplace. If you want to be at the forefront of change we may have a role or candidate for you. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.

Why it is hard to build a Big Data team

Why it is hard to build a Big Data team

Increasingly, I speak to managers who are adopting big data tools and developing PoCs to prove how they can make use of them. Just last week I spoke to a data architect who mentioned that if he didn’t get exposure to big data tech sooner rather than later, his current RDBMS skills may become redundant within the next few years. While that is likely an exaggeration, it is certainly an interesting point. Companies that would have never previously had the capability to interpret ‘Big Data’ are now exploring a variety of NoSQL platforms. In particular, the massive performance benefits gained from Spark and real-time/streaming tools have opened up a whole new world beyond just MapReduce. I don’t claim to be a data engineer, but as a recruiter for this sector, what I do is spend all day, every day interacting with big data developers, architects and managers (as well as keeping a close eye on the latest Apache incubator projects). Due to this, I have seen some recurring themes that have become trends when companies look to create and build their big data teams that are coming to the fore. Candidate demand The demand for Big Data professionals is very much a present day issue as the data companies have grand plans for is waiting for the right data developer to use the best tech to extract valuable insights from it. The best candidates receive massive interest, often gain multiple offers from a range of companies. Your business is now no longer just competing with large corporations such as Facebook, Twitter or Yahoo. Startups and SMEs are also vying for the best candidates. Candidates are seeing pay rises twice that of the normal rate, as illustrated in our salary guide. Candidate shortage The number of candidates with hands-on, production level Big Data experience is incredibly limited. We go to great lengths to find the candidates who can add real value to companies. The growth and exciting future for the big data industry has led to increased interest in big data jobs, particularly for those from RDBMS or software. engineering backgrounds. This leaves the industry in a difficult predicament: high demand + low supply = massive competition. There are countless examples of companies that have failed to recruit a Big Data team after a year of looking. Competition to get ahead and stand out Planning - Companies need to have a data road map detailing their future plans. Candidates want to clearly know what they are getting into and what to expect from a job. Innovation - Why get stuck on batch processing? The most exciting positions that candidates love are in data innovations teams, playing with real-time/streaming tech and new languages. Personal development, growth and training – with the data science market experiencing similar growth, many big data engineers are looking for a job that not only offers the chance to work with machine learning and similar fields; but training, mentoring towards clear career progression as standard. Speed – the length of the interview process is often seen as a reflection of the amount of red tape developers have to go through to get a job. The longer and more convoluted the process, the more put off some people may be. Complacency – don’t rest on your laurels, it’s unlikely that you’ll get 10s of CVs through when you are looking to fill a data role, so when you find a candidate you like, move swiftly to show your interest to them as quality candidates don’t come around often. By implementing these small but effective improvements to your recruiting process and how you develop data talent will see you create a team that is a success in this ever more digital analytics landscape. Companies who don’t create and nurture strong, dynamic teams will fall by the wayside. It’s Harnham’s job to help you achieve this goal. Get in touch with us to tell you how. T: (020) 8408 6070 E: info@harnham.com

Recently Viewed jobs