The value that data analysis can provide to organisations is becoming increasingly clear. But with all the buzz around the endless ways that data can be used to revolutionise your business processes, it can be overwhelming to know where to start. Fundamentally, what you can do with your data and how useful it may be will hinge on its quality. This is the case no matter what data you may have, whether that be customer demographics or manufacturing inventories. High-quality data is also imperative for utilising exciting and innovative new technology such as Machine Learning and AI. It’s all very well investing in tech to harness your data assets to, for example, better inform decision making, but you won’t be able to glean any useful analysis if the data is full of gaps and inconsistencies. Many will be looking at this new tech and be tempted to run before they can walk. But building quality data sets and water-tight, long-lasting processes will form the foundation for any future developments and should not be overlooked. This is where Data Governance comes into its own.Data Governance (DG) is an effective step in improving your data and turning it into an invaluable asset. It has numerous definitions but according to Data Governance Institute (DGI), “Data Governance is the exercise of decision-making and authority for data-related matters.“Essentially DG is the process of managing data during its life cycle. It ensures the availability, useability, integrity and security of your data, based on internal data standards and policies that control data usage. Good data governance is critical to success and is becoming increasingly more so as organisations face new data privacy regulations and rely on data analytics to help optimise operations and drive business decision-making. As Ted Friedman from Gartner said: ‘Data is useful. High-quality, well-understood, auditable data is priceless.’Without DG, data inconsistencies in different systems across an organisation might not get resolved. This could complicate data integration efforts and create data integrity issues that affect the accuracy of business intelligence (BI) reporting and analytics applications.Data Governance programs can differ significantly, depending on their focus but they tend to follow a similar framework:Step 1: Define goals and understand the benefits The first step of developing a strategy should be to ensure that you have a comprehensive understanding of the process and what you would like the outcome to be.A strong Data Governance strategy relies on ‘buy in’ from everyone in the business. By stressing the importance of complying with the guidelines which you will later set, you will be helping to encourage broad participation and ensure that there is a concerted and collaborated effort to maintain high standards of data quality. Leaders must be able to comprehend the benefits themselves before communicating them to their team so it may be worth investing in training around the topic.Step 2: Analyse and assess the current dataThe next step is essentially sizing up the job at hand, to see where improvements might need to be made. Data should be assessed against multiple dimensions, such as the accuracy of key attributes, the completeness of all required attributes and timeliness of data. It may also be valuable to spend time analysing the root causes of inferior data quality.Sources of poor data quality can be broadly categorised into data entry, data processing, data integration, data conversion, and stale data (over time) but there may be other elements at play to be aware of.Step 3: Set out a roadmapYour data governance strategy will need a structure in which to function, which will also be key to measuring the progress and success of the program. Set clear, measurable, and specific goals – as the saying goes – you cannot control what you cannot measure. Plans should include timeframes, resources and any costs involved, as well as identifying the owners or custodians of data assets, the governance team, steering committee, and data stewards who will all be responsible for different elements. Including business leaders or owners in this step will ensure that programs remain business-centric.Step 4: Develop and plan the data governance programBuilding around the timeline outlined you can then drill down to the nitty-gritty. DG programs vary but usually include:Data mapping and classification – sorting data into systems and classifying them based on criteria.Business glossary – establishing a common set of definitions of business terms and concepts – helping to build a common vocabulary to ensure consistency.Data catalogue – collecting metadata and using it to create an indexed inventory of available data assets.Standardisation – developing polices, data standards and rules for data use to regulate proceduresStep 5: Implement the data governance programCommunicating the plan to your team may not be a one-step process and may require a long-term training schedule and regular check-ins. The important thing to realise is that DG is not a quick fix, it will take time to be implemented and fully embraced. It also may need tweaks as it goes along and as business objectives change. All DG strategies should start small and slowly build up over time – Rome wasn’t built in a day after all. Step 6: Close the loopArguably the most important part of the process is being able to track your progress and checking in at periodic intervals to ensure that the data is consistent with the business goals and meets the data rules specified. Communicating the status to all stakeholders regularly will also help to ensure that a data quality discipline is maintained throughout.Looking for your next big role in Data & Analytics or need to source exceptional talent? Take a look at our latest Data Governance jobs or get in touch with one of our expert consultants to find out more.