When Pigs Fly or How Animal Organs Can Help Save Human Lives

our consultant managing the role
Posting date: 2/13/2019 3:38 PM
Boston, Massachusetts is once again on the cutting edge of medical research and technology. From Electronic Health Records (EHR) to Machine Learning and predictive modeling of healthcare best practices to Computational Biology; the final frontier of genetic editing.

We have come a long way in our quest to understand and improve our quality of life. In the face of cancer research, diabetes, and liver or heart failure, the world of Computational Biology opens the scientific doors to discovery and solution. This is a place for scientists to not only get to the heart of the matter, but to the core of the problem at the cellular level. 

There is an old adage which states, “when pigs fly”, usually meaning some thing will never happen or is impossible. But what happens when the impossible becomes possible? The jury’s still out, but researchers are making great inroads in developing ways to save human lives using animal organs.

Could Animal Organs Help Solve Donor Deficiency?


There are over 100,000 patients in the U.S. waiting for a transplant operation and, for many, a this may be their only cure. Yet, our growing population and the sheer number of those waiting has created a donor deficiency of epic proportions.  

Researchers have been working toward successfully transplanting organs from animals into humans. Not only has their study of stem cell technology grown over the years, but with the advent of bioinformatics, statistics, and Computational Biology, a new possibility has arisen. The chance to not only transplant organs from one species to another, but using another species to host the growing of transplantable human tissue.

Getting the Framework Right


Computational Biology is a broad discipline honed to a fine point. Using statistical modelling, it builds a wide variety of experimental Data and biological systems to understand algorithmics, Machine Learning, automation, and robotics. Its job is to ask and answer the question of how to efficiently gather, collate, annotate, search for information. But how can it do all this to determine appropriate biological measurements and observations?

At the tipping point is the notion that to truly get a good picture of the problem, the frame must be in focus. And it is this, which is the most important task for Computational Biologists to solve before continuing their research. It’s a reminder to step back and look at the problem from another angle and to challenge assumptions turning “what if” on its head. Stretching, bending, and twisting toward a solution that might not otherwise have been thought without a framework in place in order to begin modelling the system.

It is in this constant learning phase, Machine Learning applications with parameters set by the biologists, in which new information is processed, analyzed, and understood. This active learning model offers opportunities for applications to learn how to learn and will play a critical role in biomedical research now and in the future. And from this place, the second biggest problem to be solved enters the equation. Now, it’s time to refine the methods of how to solve the problem.  

Next Steps


As exciting as the possibilities are, like all things new, there are challenges. For example, not all animals will fit the bill for transplantation. The idea is to mimic as closely as possible the size and evolution of humans such as pig, sheep, or non-human primates. 

But, at an even finer point of challenge are our own cell’s reactions and expressions and understanding why they act the way they do. Ultimately, it’s important to be sure information at the individual cell level is inferred with statistical references to verify findings. At the pixel level, not using a fine-tooth comb could mean your conclusions are wrong. 

If you’re interested in Biostatistics, Bioinformatics, Computational Biology, Big Data & Analytics, we may have a role for you. We specialize in junior and senior roles. Check out our latest Computational Biology opportunities in our new Life Science Analytics specialism or our current vacancies for additional opportunities. Contact one of our recruitment consultants to learn more. 

For our West Coast Team, call (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.  

For our Mid-West and East Coast Teams, call (212) 796 - 6070 or send an email to newyorkinfo@harnham.com

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.