Life Science Analytics jobs in Chicago

Latest Jobs

Unfortunately we have no live jobs currently in this sector.
Please register for job alerts to be notifed as soon as a new role becomes available.

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Computer Vision in Healthcare Beyond Covid-19

2020. It sounds like the name of a futuristic science-fiction movie or TV show, doesn’t it? Maybe it is. And like our favorite sci-fi flicks there are cutting edge changes happening in real time. We’re the characters in this story and the Computer Vision and Artificial Intelligence partnerships in healthcare are moving fast to help us take care of ourselves. When computers can see what we can’t. When AI can help us make more informed decisions. When the two are combined to help doctors and providers work more efficiently to save lives, that’s when the cutting-edge shines. From the collaboration of Johns Hopkins, the CDC, and the WHO mapping out the data to contact traces to medical professionals on the front lines, we’ve been focused on one thing. Saving lives. But, what about the other medical issues that affect us? Heart disease. Cancer. Neurological illnesses.  What if the latest advances in healthcare could help here, too? Five Ways Computer Vision Helps Healthcare Providers Identifies leading causes of medical illnesses in a time-sensitive manner by creating algorithms for image processing, classification, segmentation, and object detection.Develops deep learning models to create neural networks.Collaboration of teams of scientists working together for the advancement of projects and present findings to business leaders, stakeholders, and clients.Allows providers to spend more time with their patients.Optimization of medical diagnoses using deep learning so doctors can spend more time with patients to help see and solve the problem faster. Computer Vision Engineer Meets AI Professional Artificial Intelligence (AI) offers real world answers in healthcare the world needs today. Computer Vision Engineers build the means to which AI helps providers, patients, and leaders make informed decisions. Core requirements for both roles include, but aren’t limited to: Experience in machine learning and deep learning.How to build computer vision algorithms and probability models.Problem-solving skills, creativity, ingenuity, and innovation.Languages like Python, R, Hadoop, Java, and Spark.Be able to see the big picture while at the same time finding the devil in the details. Always striving to improve, to make better, to advance the technology within the industry. The Challenges and the Potential of Technology in Healthcare At the moment, Computer Vision, AI, and other healthcare technology models are localized to individual placements. The next step is to have these technologies ‘speak’ to each other across hospitals, provider’s offices, telehealth applications, and electronic health records management for a more cohesive benefit of care. As this year rounds to a close, we know the vulnerabilities of our healthcare system, and can find solace in the though that technology is bringing it forward at lightning speed. Automation and telehealth appointments have made it a breeze to talk to our doctors and get results faster. We can pay our bills with the click of a button and even carve out a payment plan, if need be. All without leaving our homes. The data now available to us and our providers offers a foundation, a benchmark of information, so our doctors can make more informed decisions. This data goes beyond the individual, it helps set a precedent for not only individuals, but also entire populations, to help us identify future health issues, epidemics, and pandemics.  Stored data is private and stays within its construct of hospital or doctor’s office, but from it we can create models to plan for the future. Want to make your make your mark in the healthcare and tech industry? We may have just the role for you. Check out our current vacancies or get in touch with one of our expert consultants to learn more.   For our West Coast Team, contact us at (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.   For our Mid-West and East Coast teams contact us at (212) 796-6070 or send an email to newyorkinfo@harnham.com.  

Why You Should Always Be Learning In Data Science: Tips From Kevin Tran

Last month we sat down with Kevin Tran, a Senior Data Scientist at Stanford University, to chat about Data Science trends, improvements in the industry, and his top tips for success in the market.  As one of LinkedIn’s Top Voices of 2019 within Data & Analytics. his thoughts on the industry regularly garner hundreds of responses, with debates and discussions bubbling up in the comments from colleagues eager to offer their input.  This online reputation has allowed him to make a name for himself, building out his own little corner of the internet with his expertise. But for Tran, it’s never been about popularity. “It’s not about the numbers,” he says without hesitation. “I don’t care about posting things just to see the number of likes go up.” His goal is always connection, to speak with others and learn from them while teaching from his own background. He’s got plenty of stories from his own experiences. For him, sharing is a powerful way to lead others down a path he himself is still discovering.  When asked about the most important lesson he’s learned in the industry, he says it all boils down to staying open to new ideas.  “You have to continue to learn, and you have to learn how to learn. If you stop learning, you’ll become obsolete pretty soon, particularly in Data Science. These technologies are evolving every day. Syntax changes, model frameworks change, and you have to constantly keep yourself updated.”  He believes that one of the best ways to do that is through open discussion. His process is to share in order to help others. When he has a realisation, he wants to set it in front of others to pass along what he’s learned; he wants to see how others react to the same problem, if they agree or see a different angle. It’s vital to consider what you needed to know at that stage. Additionally, this exchange of ideas allows Tran to learn from how others tackle the same problems, as well as get a glimpse into other challenges he may have not yet encountered.  “When I mentor people, I’m still learning, myself,” Tran confesses. “There’s so much out there to learn, you can’t know it all. Data Science is so broad." At the end of the day, it all comes down to helping each other and bringing humanity back to the forefront. In fact, this was his biggest advice for both how to improve the industry and how to succeed in it. It’s a point he comes back to with some regularity in his writing. “It doesn’t matter how smart you are, stay humble and respect everyone,” one post reads. “Everyone can teach you something you don’t know.” Treating people well, understanding their needs, and consciously working to see them as people instead of numbers or titles—this, Tran argues, is how you succeed in the business. To learn and grow, you must work with people, especially people with different skills and mindsets. Navigating your career is not all technical, even in the world of Data. “The thing that cannot be automated is having a heart,” he tells me sagely. Beyond this, Tran stresses the need for a solid foundation. The one thing you can’t afford to do is take shortcuts. You have to learn the practicalities and how to apply them, but to be strong in theory as well.  Understanding what is happening underneath the code will keep you moving forward. He compares knowing the tools to learning math with a calculator. “If you take the calculator away, you still need to be able to do the work. You need the underlying skills too, so that when you’re in a situation without the calculator, you can still provide solutions.” By constantly striving to collaborate and improve, Tran believes the Data industry has the best chance of innovating successfully.  If you’re looking for a new challenge in an innovative and collaborative environment, we may have a role for you. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more. 

Recently Viewed jobs