Senior Deep Learning Engineer - Medical Imaging

Boston, Massachusetts
US$145000 - US$165000 per annum

SENIOR DEEP LEARNING ENGINEER - MEDICAL IMAGING
MEDICAL TECH COMPANY
UNITED STATES - REMOTE WORK
$145,000 - $165,000

Do you possess a strong background in medical imaging and computer vision? Do you want to work in a growing AI team at a company that is making huge advancements in the telehealth industry? Keep reading!!

THE COMPANY

This fast growing company has dedicated itself to using AI to change the teleheath industry. They are well established and well funded and have received attention around the globe. They are working on building out a new AI team that is going to change the way people are receving a health service from the comfort of their own home.

THE ROLE - SENIOR MEDICAL IMAGING ENGINEER

As a Senior Deep Learning Engineer, you will be working in a small AI team and will be involved in helping build out the team as well

  • You will be devloping computer vision and deep learning models for the company's newest area within telehealth
  • You will be working heavily with Python and working with deep learning frameworks such as PyTorch and TensorFlow
  • You will be involved in bringing the models from research into production and getting them ready for deployment
  • You will be working on image processing and 3D reconstruction of images and videos provided by the company's customers

YOUR SKILLS AND EXPERIENCE

  • MSc or PhD in a related area, preferably in biomedical engineering. medical imaging or computer vision
  • At least 2 years of industry experience working image processing and 3d reconstruction
  • Proven experience with delivering AI algorithms and putting them into production
  • Strong technical skillset in Python, Keras, TensorFlow and PyTorch
  • Prior experience with developing algorithms and working with different types of medical imaging modalities

BENEFITS
You can expect to earn up to $165,000 (depending on experience) as a Senior Deep Learning Engineer.

HOW TO APPLY

Please register your interest by sending your resume to Annie Nasharr via the apply link on this page.

KEYWORDS

Computer vision, healthcare, deep learning, medical imaging, object detection, image classification, computer science, artificial intelligence, C++, Python, Keras, TensorFlow, PyTorch, image analysis, research, MRI, CT , 3D Reconstruction, image processing

Send similar jobs by email
106900/AN0303
Boston, Massachusetts
US$145000 - US$165000 per annum
  1. Permanent
  2. Medical Imaging

Similar Jobs

Salary

US$145000 - US$165000 per annum

Location

New York

Description

This fast growing company is looking for a Deep Learning/Computer Vision expert that has experience with deploying deep learning models

Salary

US$150000 - US$170000 per annum

Location

Chicago, Illinois

Description

This company is taking an interesting approach in the medical imaging space

Salary

US$145000 - US$165000 per annum

Location

New York

Description

This fast growing company is looking for a Deep Learning/Computer Vision expert that has experience with deploying deep learning models

Salary

US$140000 - US$160000 per annum

Location

New York

Description

This fast growing company is looking for a Deep Learning/Computer Vision expert that has experience with deploying deep learning models

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Bridging the Gap: The Role of a DevOps Engineer

Siloed teams are swiftly becoming a thing of the past as organizations learn collaboration is key. Businesses are embracing transformation. But some may not know where to turn to help them manage such a massive restructuring of operations. Enter the DevOps Engineer. Yes, Virginia. The unicorn employee does exist. What is a DevOps Engineer? For many businesses, it’s a dream to find a technical person who can also communicate across departments. In the DevOps Engineer role is an IT Generalist who not only has a deep understanding of codes, infrastructure management, and agile familiarity but who also possesses interpersonal skills. It’s this combination that makes this role so imperative to businesses. Working across siloes and bringing teams together for collaboration bridges the gap between the technical and non-technical departments. One of their most important roles is as advocate. Moving from siloed teams to the more collaborative environment of a DevOps culture can be difficult for engineering team members. But as advocate for the benefits, the DevOps Engineer can explain it best to those with whom they’ve worked. Their technical expertise puts them on par with their peers and their interpersonal skills offer a way to communicate across the organization.   Want to Restructure Your Skills toward DevOps? If you’re an IT Generalist with great communication skills. DevOps Engineer could be your next role. But what skills do you need and how might you streamline what you already know into this key role for many businesses? Technical skills depend on team structure, technologies in place, and tools already in use. But the key element of a DevOps Engineer is their strong communication and collaborative skills. Can you morph your technical world into layman’s terms for the executives? Can you translate different needs across teams from QA testers to software developers, generalists and specialists alike? It’s this deep understanding which makes you so valuable to employers. For many organizations, this is the best of both worlds.  Knowing the pros and cons of available tools. Understanding the components of a delivery pipeline. And strong communication skills to bridge once siloed teams into a cohesive and collaborative environment. More technical skills include, but aren’t limited to System administration – such as managing servers, database deployment, and system patching just to name a few.Experience with DevOps tools – understand the lifecycle from building and infrastructure to operating and monitoring a product or service.Configuration management – experience with configuration management tools such as Chef, Puppet, or Ansible to automate admin tasks.Continuous Integration (CI) and Continuous Deployment (CD) – this is a core practice of DevOps. It’s this role’s approach to software development with tools to automate the building, testing, and deploying of software processes. System architecture and provisioning – ability to design and manage computer ecosystems whether in-office or in the cloud. Within this skillset is the importance of Infrastructure as Code (IaC). This is an IT management process that applies best practices from software development to cloud infrastructure management.  Collaborative management skills – while the CI/CD skills are core to the technical side, this is one of the key components for the soft skills required for a DevOps structure. In a Nutshell DevOps (Development + Operations) is a practice that involves new management principles and requires a cultural change. And a DevOps Engineer is the heart of the transformation. Yet they can’t do it alone. A good DevOps Team has more than just one engineer. It involves a mix of generalists and specialists to implement and improve these practices within the software development cycle. A few of these roles include:  DevOps evangelist Automation expert Software developer Quality assurance  If you’re interested in Big Data and Analytics, Harnham may have a role for you. Check out our current vacancies or contact one of our expert consultants to learn more.  For our West Coast Team, contact us at (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.  For our Mid-West and East Coast teams contact us at (212) 796-6070 or send an email to newyorkinfo@harnham.com.  

Amped Up Analytics: Google Analytics 4

Google Analytics 4 has amped up data insights into the behaviors and preferences of your customers. Where once each touchpoint only tracked what had been clicked, GA4 is bringing it all together in a more wholistic approach to the customer journey. As the fourth quarter of 2020 dawned, Google upped its game. Crafting a compelling array of features with machine learning at its core, this new platform offers a more customer-centric approach to data-driven insights, rather than split data across platforms and devices.   Though still in its infancy, there are some dramatic new changes afoot. And while it’s not a good idea to get rid of the old Universal Analytics platform before ringing in the new one, it is a good idea to understand what’s available now and what may come to be over time. Four Advantages to Google Analytics 4.0 From our desktop to our laptop to our smartphone, we carry our office in our pocket or on our lap. So, what better way to integrate what was once called “App + Web properties” into a more cohesive trackable measurement of data. Add to this the privacy protocols in place to protect customers, and Google Analytics 4 offers flexibility for future cookieless tracking and permissions, and advantages are revealed. Combined Data and Reporting Rather than focusing on one property (web or app) at a time, this platform allows marketers to track a customer’s journey more holistically.  The platform’s premise is that there is a pattern everyone follows. From the moment a customer visits your website to clicks on a button subscribing to your newsletter or blog – Acquisition and Engagement. To the moment your customer makes a purchase, is happy with the product or sevice, and comes back again – Monetization and Retention.  Designed for marketers who want to track users across multiple formats, Google Analytics 4 hopes to solve with Data Streams. These Data Streams merge to paint a picture of the customer journey from website visit to purchase. A Focus on Anonymized Data This anonymization answers the call to Data Privacy and third-party data collection. Crafting a unified user journey centered around machine learning to fill in any gaps, marketers and businesses have a way to get the information they need without diving into personal data issues. This is a key change in that Google is moving away from client-side focus and using server-side and customer-centric capabilities. With GDPR and privacy laws in full swing, marketers face enhanced privacy regulations as cookies are phased out or blocked. Predictive Metrics and Audiences Using Machine Learning to predict future transactions is a game changer for the platform. These predictive metrics for e-commerce sites on Google properties allow for targeted ads to visitors who seem most likely to make a purchase within one week of visiting the site.  Though focused on e-commerce sites now and based on transactions and revenue, there is an opportunity for marketers to identify and convert based on such leads as video views or form submissions. Machine Learning-Driven Insights The launch announcement for GA4 explains it “has machine learning at its core to automatically surface helpful insights and gives you a complete understanding of your customers across devices and platforms.” Machine Learning-driven insights include details that elude human analysts.  What These Changes Mean on the Digital Frontier We’re all reaching for higher value and Google Analytics 4.0 brings it into one unified platform for the future. As we make the shift from traditional Google Analytics to its 4.0 version, there is opportunity to get more creative.   Wondering if you should upgrade? This article breaks down the pros and cons to help you decide.  If you’re interested in Big Data & Analytics, Harnham may have a role for you. Check out our current vacancies or contact one of our expert consultants to learn more.  For our West Coast Team, contact us at (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.  For our Mid-West and East Coast teams contact us at (212) 796-6070 or send an email to newyorkinfo@harnham.com.  

Recently Viewed jobs