Senior Data Engineer - CPG eCommerce

Cincinnati, Ohio
US$120000 - US$130000 per annum + Additional Benefits

Senior Data Engineer - CPG eCommerce

$120,000 - $130,000 base annual salary with additional benefits

Cincinnati, OH

THE COMPANY

This multi-billion-dollar industry conglomerate is looking to bring in intelligent, passionate, top notch cloud-based big data engineers to join their innovative and expansive brand to help grow their R&D Analytics branch to inform various major business decisions.

If you are a forward-thinking self-starter looking to embark on a new career with one of the largest world-renowned businesses, this could be the next opportunity for you!

THE ROLE

As Senior Data Engineer, your skillset will be highly utilized by the data science team to help derive insights on various product and service offerings such as consumer behavior and mark downs etc. Specifically, you will be responsible for the following key tasks:

  • Gathering requirements and collaborating closely with the Data Scientists to translate into technical output
  • Knowing which questions will help to resolve which used case situations
  • Coding in Python and Spark to build data pipelines and back end ML support functions
  • Working in a cloud hybrid environment of Azure, GCP and migrating existing data into AWS

YOUR SKILLS AND EXPERIENCE

In order to be considered for the Senior Data Engineer position, you must have at minimum the following prerequisites:

  • A Bachelor's or higher degree in Computer Science/Engineering/related field
  • Seasoned commercial data engineering experience
  • A willingness to learn new technologies and tools and a passion for code
  • Strong previous professional collaboration experience with data science teams
  • Prior hands-on commercial experience with Python and Spark
  • Prior hands-on commercial experience with at least one of the following cloud services, preferably serverless: AWS, GCP, Azure

THE BENEFITS

  • $120,000 - $130,000 base annual salary depending on experience level
  • Additional annual bonus package paid out at the end of the year
  • Medical, Dental, Vision Insurance
  • Competitive PTO and STO packages
  • Relocation (as needed)
  • Higher education resources
  • An energetic, intelligent, and forward-thinking environment

***Unfortunately, the client is not able to offer sponsorship or transfer of sponsorship for those who need it either now or in the future.***

HOW TO APPLY

Please register your interest by sending your résumé to Kavya Kannan via the Apply link on this page.

KEYWORDS

Big Data, Data Engineering, Data Pipeline, Data Architecture, Design, Python, AWS, Real Time, Streaming, Batch Processing, ETL, ELT, Data Formatting, Data Structure, Data Modeling, Data Governance, Data Cleansing, ML, Deep learning, NLP, PyTorch, Petabytes, R&D, Data Science

Send similar jobs by email
98504/KK46
Cincinnati, Ohio
US$120000 - US$130000 per annum + Additional Benefits
  1. Permanent
  2. Big Data

Similar Jobs

Salary

US$182887 - US$207272 per annum

Location

San Francisco, California

Description

This Senior Big Data Engineer will have a great opportunity to work collaboratively amongst teams and be a key contributor in building this data platform.

Salary

US$130000 - US$140000 per annum

Location

Cincinnati, Ohio

Description

Looking for Senior Data Engineers to design/build data pipelines in a multi-cloud environment for data science teams.

Salary

US$100000 - US$130000 per annum + Base Salary

Location

Maryland

Description

A Leading Ad-Tech Company is looking for bright, self-motivated data engineers to join them (can be fully remote)! Read below to learn more!

Salary

US$120000 - US$130000 per annum + Additional Benefits

Location

Cincinnati, Ohio

Description

A CPG business in Cincinnati are looking for passionate and energetic seasoned senior data engineers to join their business!

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Amped Up Analytics: Google Analytics 4

Google Analytics 4 has amped up data insights into the behaviors and preferences of your customers. Where once each touchpoint only tracked what had been clicked, GA4 is bringing it all together in a more wholistic approach to the customer journey. As the fourth quarter of 2020 dawned, Google upped its game. Crafting a compelling array of features with machine learning at its core, this new platform offers a more customer-centric approach to data-driven insights, rather than split data across platforms and devices.   Though still in its infancy, there are some dramatic new changes afoot. And while it’s not a good idea to get rid of the old Universal Analytics platform before ringing in the new one, it is a good idea to understand what’s available now and what may come to be over time. Four Advantages to Google Analytics 4.0 From our desktop to our laptop to our smartphone, we carry our office in our pocket or on our lap. So, what better way to integrate what was once called “App + Web properties” into a more cohesive trackable measurement of data. Add to this the privacy protocols in place to protect customers, and Google Analytics 4 offers flexibility for future cookieless tracking and permissions, and advantages are revealed. Combined Data and Reporting Rather than focusing on one property (web or app) at a time, this platform allows marketers to track a customer’s journey more holistically.  The platform’s premise is that there is a pattern everyone follows. From the moment a customer visits your website to clicks on a button subscribing to your newsletter or blog – Acquisition and Engagement. To the moment your customer makes a purchase, is happy with the product or sevice, and comes back again – Monetization and Retention.  Designed for marketers who want to track users across multiple formats, Google Analytics 4 hopes to solve with Data Streams. These Data Streams merge to paint a picture of the customer journey from website visit to purchase. A Focus on Anonymized Data This anonymization answers the call to Data Privacy and third-party data collection. Crafting a unified user journey centered around machine learning to fill in any gaps, marketers and businesses have a way to get the information they need without diving into personal data issues. This is a key change in that Google is moving away from client-side focus and using server-side and customer-centric capabilities. With GDPR and privacy laws in full swing, marketers face enhanced privacy regulations as cookies are phased out or blocked. Predictive Metrics and Audiences Using Machine Learning to predict future transactions is a game changer for the platform. These predictive metrics for e-commerce sites on Google properties allow for targeted ads to visitors who seem most likely to make a purchase within one week of visiting the site.  Though focused on e-commerce sites now and based on transactions and revenue, there is an opportunity for marketers to identify and convert based on such leads as video views or form submissions. Machine Learning-Driven Insights The launch announcement for GA4 explains it “has machine learning at its core to automatically surface helpful insights and gives you a complete understanding of your customers across devices and platforms.” Machine Learning-driven insights include details that elude human analysts.  What These Changes Mean on the Digital Frontier We’re all reaching for higher value and Google Analytics 4.0 brings it into one unified platform for the future. As we make the shift from traditional Google Analytics to its 4.0 version, there is opportunity to get more creative.   Wondering if you should upgrade? This article breaks down the pros and cons to help you decide.  If you’re interested in Big Data & Analytics, Harnham may have a role for you. Check out our current vacancies or contact one of our expert consultants to learn more.  For our West Coast Team, contact us at (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.  For our Mid-West and East Coast teams contact us at (212) 796-6070 or send an email to newyorkinfo@harnham.com.  

Making Sense of Unstructured Data with NLP

Natural Language Processing. It seems a simple enough explanation. The idea is to make computers sound like native speaking humans regardless of their language. Except there’s one problem. When we speak, we don’t follow our own rules of grammar. We use idioms, metaphors, abbreviations, and oftentimes use more body language to communicate than we realize.  So, what’s a poor machine to do when confronted with such an unstructured melee of data? Well, since semantics is not what you say it’s how you say it, we must teach computers to read between the lines. Of code. Enter NLP. The semantics of human language written for a machine to help make sense of our human behaviors gets organized. The Perfect Imperfections of Language Computers require structure. Natural language does not. Teaching machines how we communicate is no easy task, and yet we use machines that can do this every day. By combining technology and Machine Learning we begin to teach computers how to understand us. We teach them how to interpret and determine what it was we want done. When you’re asking Siri or Alexa a question, you’re helping them to learn how you ask, so they can better respond, and they make you more efficient. It’s a win-win for everyone. In business, using NLP techniques to drive business decisions is even more important. Now, the computer must decide what information is the most valuable to pull from a pile of Data. Understanding our choices, our tone, even the words we choose to use, helps our machines learn what we want to do or need done. Where is NLP Used? Since we use different rules when we speak than when we write, our computers learn how we talk and how to use language more naturally. Wondering where NLP might be used? In a word or two? Nearly everywhere. You are scheduling a meeting and when it’s time, a calendar reminder pops into your phone which says estimated drive time to the meeting based on traffic conditions in your area. Or you ask Alexa to play your favorite music list from Pandora.  Every touchpoint in this scenario is using NLP. We naturally might get into our car, ask our Virtual Assistant navigation system for directions, or to play our favorite music. Our choices don’t fit in a box and may not be logical, but the more we teach the machines, the closer they may get to understanding the nuances of our language. Here are 5 more ways we use NLP every day: Predictive text on your phone or in your Word document. Chatbots and Virtual Assistants to ensure customers are acknowledged in a timely manner, answer basic questions or redirect to appropriate personnel, and making suggestions to improve the customer experience.Curating social media feeds to determine customer needs and interest.Grammar correction software so our emails and business documents are error-free.Analyzing customer interactions using comments and reviews for customer feedback about a product or service. There’s a ton of information to be filtered, sorted, sifted, and analyzed, and NLP is just one of the tools Data Scientists use. Interested in the subfield of NLP? Check out this article for 6 techniques you need to know to get started. Already well-versed in the industry and looking for a new challenge? If you’re interested in Big Data and Analytics, Advanced Analytics, Life Sciences, Data Science, or any of our Data professional fields, we may have a role for you. Review our current vacancies or contact one of our expert consultants to learn more.   For our West Coast Team, contact us at (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.   For our Mid-West and East Coast teams contact us at (212) 796-6070 or send an email to newyorkinfo@harnham.com.  

Recently Viewed jobs