Data Science Jobs in Boston

Our speciality is matching highly experienced and skilled talent, with world leading organisations who value the hidden insights data scientists can extract from data. Uniquely we understand the bespoke nature of this requirement and specialism, which goes beyond just qualifications in languages and database technologies such as R, Python and MySQL.



View our Data Science Jobs in Boston here now.

Latest Jobs

Salary

US$160000 - US$180000 per annum + Bonus + Benefits

Location

Boston, Massachusetts

Description

This is a technical leadership position where you'll work closely with sales and marketing teams on impactful data science projects.

Salary

US$180000 - US$200000 per annum

Location

Boston, Massachusetts

Description

This is an opportunity for a leader in the data science space to come into a growing team at a large pharmaceutical company and have a major impact.

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

A Slam-Dunk Career as a SLAM Engineer

Philadelphia. It’s known for it’s Philly Cheesesteak, the Liberty Bell, and where the Constitution was signed. Always on the cutting edge, Philadelphia is a land of firsts. You may or not know this, but one of its firsts was to have the first general use computer in 1946. Is it any wonder then that a company there is building robots to navigate GPS denied environments and was begun by leaders in the Computer Vision space?  Beyond the Roomba If you consider the Roomba, the autonomous vacuum that sweeps up pet hair, dirt, and other unwanted product, how does it know where to go? How does it know to go under a table or chair or around a wall to the next room? How does it know to avoid the dog, cat, or you? On nearly the smallest scale, this little round machine is a personal version of simultaneous location and mapping (SLAM).  However, the computational geometry method of this mapping and localization technique extends in a wide variety of arcs. Here are a few to get you thinking: GPS Navigation SystemsSelf-driving carsUnmanned Aerial Vehicles (UAV)Autonomous Underwater Vehicles (AUV)DronesRobotsVirtual Reality (VR)Augmented Reality (AR)Monocular Camera...and more There’s even a version which is used in the Life Sciences called RatSLAM. But we’ll visit that in another article. The uses and benefits of this simultaneous location and mapping technique are exponential even with some of the challenges posed by Audio-Visual and Acoustic SLAM. What is SLAM? Essentially, it is the 21st century version of cartography or mapping. Except in this case, not only can it map the environment, but it can also locate your place in it. When you want to know where the nearest restaurant is, you simply type in ‘restaurant near me.’ And soon, a list appears on your phone with a list radiating from nearest location outward.  Imagine you’re lost on a hike, you manage to find signal, and soon your GPS is offering directions on which way to move toward civilization.  This is Simultaneous Localization and Mapping. It locates you, your vehicle, a robot, drone, unmanned aerial vehicle or self-driving car and puts people and things in the direction it thinks they want to go or should go to get to safety. While mapping is at the epicenter of SLAM Computer Vision Engineering, there are other elements within the field as well. But let’s begin with mapping. Topological maps offer a more precise representation of your environment and can therefore help ensure consistency on a global scale.  Just as humans do when giving directions, sensor models offer landmark-based approaches to make it easier to determine your location within the map’s structure and raw-data approaches which makes no assumptions. Landmarks such as wifi or radio beacons are some of the easiest to locate, but may not always be correct which is where the raw-data approach comes in to offer its two cents as a model of location function. Four Challenges of SLAM GPS sensors may not function properly in chaotic environments such as military conflict. }Non-static environments such as pedestrians or high traffic areas with multiple vehicles make locations difficult to pinpoint.In Acoustic SLAM, challenges include inactivity and environmental noise as well as echo. Sound localization requires a robot or machine to be equipped with a microphone in order to go in the requested direction. Five Additional Forms of SLAM Tactile (sensing by touch)RadarAcousticAudio-Visual (a function of Human-Robot interaction)Wifi (sensing strength of nearby access points) Ready to Explore a Robotics and Computer Vision Career? Whether you’re interested in a slam dunk career as a SLAM Engineer or looking for your first or next role in Big Data, Web Analytics, Advanced Analytics & Insight, Life Science Analytics, or Data Science, take a look at our current vacancies or get in touch one of our expert consultants to learn more.   For our West Coast Team, contact us at (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.   For our Mid-West and East Coast teams contact us at (212) 796-6070 or send an email to newyorkinfo@harnham.com.

Why You Should Always Be Learning In Data Science: Tips From Kevin Tran

Last month we sat down with Kevin Tran, a Senior Data Scientist at Stanford University, to chat about Data Science trends, improvements in the industry, and his top tips for success in the market.  As one of LinkedIn’s Top Voices of 2019 within Data & Analytics. his thoughts on the industry regularly garner hundreds of responses, with debates and discussions bubbling up in the comments from colleagues eager to offer their input.  This online reputation has allowed him to make a name for himself, building out his own little corner of the internet with his expertise. But for Tran, it’s never been about popularity. “It’s not about the numbers,” he says without hesitation. “I don’t care about posting things just to see the number of likes go up.” His goal is always connection, to speak with others and learn from them while teaching from his own background. He’s got plenty of stories from his own experiences. For him, sharing is a powerful way to lead others down a path he himself is still discovering.  When asked about the most important lesson he’s learned in the industry, he says it all boils down to staying open to new ideas.  “You have to continue to learn, and you have to learn how to learn. If you stop learning, you’ll become obsolete pretty soon, particularly in Data Science. These technologies are evolving every day. Syntax changes, model frameworks change, and you have to constantly keep yourself updated.”  He believes that one of the best ways to do that is through open discussion. His process is to share in order to help others. When he has a realisation, he wants to set it in front of others to pass along what he’s learned; he wants to see how others react to the same problem, if they agree or see a different angle. It’s vital to consider what you needed to know at that stage. Additionally, this exchange of ideas allows Tran to learn from how others tackle the same problems, as well as get a glimpse into other challenges he may have not yet encountered.  “When I mentor people, I’m still learning, myself,” Tran confesses. “There’s so much out there to learn, you can’t know it all. Data Science is so broad." At the end of the day, it all comes down to helping each other and bringing humanity back to the forefront. In fact, this was his biggest advice for both how to improve the industry and how to succeed in it. It’s a point he comes back to with some regularity in his writing. “It doesn’t matter how smart you are, stay humble and respect everyone,” one post reads. “Everyone can teach you something you don’t know.” Treating people well, understanding their needs, and consciously working to see them as people instead of numbers or titles—this, Tran argues, is how you succeed in the business. To learn and grow, you must work with people, especially people with different skills and mindsets. Navigating your career is not all technical, even in the world of Data. “The thing that cannot be automated is having a heart,” he tells me sagely. Beyond this, Tran stresses the need for a solid foundation. The one thing you can’t afford to do is take shortcuts. You have to learn the practicalities and how to apply them, but to be strong in theory as well.  Understanding what is happening underneath the code will keep you moving forward. He compares knowing the tools to learning math with a calculator. “If you take the calculator away, you still need to be able to do the work. You need the underlying skills too, so that when you’re in a situation without the calculator, you can still provide solutions.” By constantly striving to collaborate and improve, Tran believes the Data industry has the best chance of innovating successfully.  If you’re looking for a new challenge in an innovative and collaborative environment, we may have a role for you. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more. 

Recently Viewed jobs