A data janitor, the sexiest job of the 21st century



A job invented in Silicon Valley is going mainstream as more industries try to gain an edge from big data.

The job description “data scientist” didn’t exist five years ago. No one advertised for an expert in data science, and you couldn’t go to school to specialize in the field. Today, companies are fighting to recruit these specialists, courses on how to become one are popping up at many universities, and the Harvard Business Review even proclaimed that data scientist is the “sexiest” job of the 21st century.

Data scientists take huge amounts of data and attempt to pull useful information out. The job combines statistics and programming to identify sometimes subtle factors that can have a big impact on a company’s bottom line, from whether a person will click on a certain type of ad to whether a new chemical will be toxic in the human body.

While Wall Street, Madison Avenue, and Detroit have always employed data jockeys to make sense of business statistics, the rise of this specialty reflects the massive expansion in the scope and variety of data now available in some industries, like those that collect data about customers on the Web. There’s more data than individual managers can wrap their minds around—too much of it, changing too fast, to be analyzed with traditional approaches.

As smartphones promise to become a new source of valuable data to retailers, for example, Walmart is competing to bring more data scientists on board and now advertises for dozens of open positions, including “Big Fast Data Engineer.” Sensors in factories and on industrial equipment are also delivering mountains of new data, leading General Electric to hire data scientists to analyze these feeds.

The term “data science” was coined in Silicon Valley in 2008 by two data analysts then working at LinkedIn and Facebook (see “What Facebook Knows”). Now many startups are basing their businesses on their ability to analyze large quantities of data—often from disparate sources. ZestFinance, for example, has a predictive model that uses hundreds of variables to determine whether a lender should offer high-risk credit. The underwriting risk it achieves is 40 percent lower than that borne by traditional lenders, says ZestFinance data scientist John Candido. “All data is credit data to us,” he says.

Data scientist has become a popular job title partly because it has helped pull together a growing number of haphazardly defined and overlapping job roles, says Jake Klamka, who runs a six-week fellowship to place PhDs from fields like math, astrophysics, and even neuroscience in such jobs. “We have anyone who works with a lot of data in their research,” Klamka says. “They need to know how to program, but they also have to have strong communications skills and curiosity.”

The best data scientists are defined as much by their creativity as by their code-writing prowess. The company Kaggle organizes contests where data scientists compete to find the best way to make sense of massive data sets (see “Startup Turns Data Crunching into a High-Stakes Sport”). Many of the top Kagglers (there are 88,000 registered on the site) come from fields like astrophysics or electrical engineering, says CEO Anthony Goldbloom. The top-ranked participant is an actuary in Singapore.

Universities are starting to respond to the job market’s needs. Stanford University plans to launch a data science master’s track in its statistics department, says department chair Guenther Walther. A dozen or so other programs have already been started at schools including Columbia University and the University of California, San Francisco. Cloudera, a company that sells software to process and organize large volumes of data, announced in April that it would work with seven universities to offer undergraduates professional training on how to work with “big data” technologies.

Cloudera’s education program director, Mark Morissey, says a skills shortage is looming and that “the market is not going to grow at the rate it currently wants to.” That has driven salaries up. In Silicon Valley, salaries for entry-level data scientists are around $110,000 to $120,000.

Others think the trend could create a new area of outsourcing. Shashi Godbole, a data scientist in Mumbai, India, who is ranked 20th on Kaggle’s scoreboard, recently completed a Kaggle-arranged hourly consulting gig, a new business the platform is getting into. He did work for a tiny health advocacy nonprofit located in Chicago and is now bidding on more jobs (he earns $200 per hour, and Kaggle collects $300 an hour). His Kaggle work is part time for now, but he says it’s possible that it could be his major source of income one day.

To the data scientists themselves, the job is certainly less sexy than it’s being made out to be. Josh Wills, a senior director of data science at Cloudera, says most of the time it involves cleaning up messy data—for example, by putting it in the right columns and sorting it.

“I’m a data janitor. That’s the sexiest job of the 21st century,” he says. “It’s very flattering, but it’s also a little baffling.”


Click here for the article on the web.



<< Click here to see more recent news articles >>

 

 

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our News & Blogs portal or check out our recent posts below.

Data Engineers: The Workers Behind the Curtain

We’re halfway through the year and our salary guide is out. If you wonder where you are, where you’re going, and if you’re a business, how you’re going to get there. Well, then, you’ve come to the right place. Articles have touted Data Scientists as the “rock stars” of the 21st century, but even rock stars need their managers and roadies. Who else will build the stage and plan the tour? And in the world of data, it all begins with the Data Engineer, laying the groundwork, the foundation, and the framework. These are the stars behind the scenes who make it possible for Data and Data Scientists to be front and center. Send a Data Engineer Over As prevalent as Data has become in our lives and as its importance grows, there remains the challenge of Data Management. If you don’t know why something is built or how to navigate the structure, the Data you do receive may not make much sense. Your guide in this journey is the Data Engineer, one of the most important pieces of your Data Management puzzle.  These highly skilled and sought-after professionals should not be confused with a Software Engineer, though some elements may be transferable between the two. The building blocks to put massive amounts of Data into a scalable system both reliable and secure takes a unique set of skills.  Humans at the Helm as Skills Shift  As much as we depend on Data today to help determine actionable insights for our business and as much as we hear about the rise of machines in the form of Artificial Intelligence, Machine Learning, and Deep Learning, it is ultimately humans who are at the helm.  It is the people behind the curtain of Data who will build it, run it, and make it work. It is also people who are typically the biggest costs in a project. Finding the balance and ideal candidate, the right person with the right skills for the job, is critical to success. And if you’re starting from the ground up, Data Engineers who can work with the core tools of databases and Spark, for example, will see their opportunities grow.  In our Salary Guide for 2019, we learned one of the skills most sought after by companies today is knowing AWS/Azure and moving Data Lakes into the Cloud. Small businesses and startups are moving to the Cloud to help them scale their Data, but someone still needs to lay the groundwork, whether it’s for the small business or the public cloud providers. Data Engineers are in high demand and it doesn’t look as though things will be slowing down anytime soon. The field is slick with potential. The Time Has Come for Transparency Data is binary gold and, with enough of it, you can read or estimate the mind of your customer or you can wreak havoc on someone’s life. Just a year ago, the European Union put into place rules and regulations as well as financial consequences for poor Data Governance under the General Data and Protections Regulation Act (GDPR). Though the U.S. doesn’t yet have a similar law, there are still plenty of mandates to be aware of by states, unions, and countries.  One Final Thought As roles and technology evolves, it’s important for businesses, employees, and stakeholders to evolve as well. Whether that means making sure to implement practices for Data transparency or upskilling and reskilling your workforce to keep up or simply knowing the trends of forward-thinking companies to scale your own business. Data fuels digital innovation and organizations who are prepared to find solutions will benefit. Want to know what else is trending in big data? Here are a few trends in Big Data forward-looking organizations should look out for in this year and toward the next. Are you a business who knows you’re ready to scale up and hire a Data professional? We have a strong candidate pool and may have just the person you need to fill your role. Are you a candidate looking for a role in Big Data & Analytics? We specialize in junior and senior roles. Check out our current vacancies or contact one of our recruitment consultants to learn more.  For our West Coast Team, call (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.   For our Mid-West and East Coast Teams, call (212) 796 - 6070 or send an email to newyorkinfo@harnham.com.

A Data Engineer is a Unique Blend of Data Professional

From startup and small business to large enterprises, each type of business requires a unique blend of Data professional. Though in today’s world, much of the Data being gathered, catalogued, and analyzed happens both in the Cloud and on a hard drive, each type of business has a different need, budget, goals, and objectives. But there is one thing each and every business will have in common. At the heart of the Data team will be a Data Engineer. The Three Main Roles of a Data Engineer This is an analytics role in high demand. It is a growing and lucrative field with steps and stages for nearly every level of business and education experience. For example, a Data Scientist interested in stepping into a Data Engineer role might begin as a Generalist. In all, there are three main roles for each level and type of business – Generalist, Pipeline-Centric, and Data-Centric. Let’s take a quick look at each of the roles with an eye toward the type of person who might be the best fit: Generalist – Most often found on a small team, this type of Data Engineer is most likely the only Data-focused person in the company. They may have to do everything from build the system to analyze it, and while it carries its own unique set of skills, it doesn’t require heavy architecture knowledge as smaller companies may not yet be focusing on scale. In a nutshell, this might be a good entry point for a Data Scientist interested in upskilling and reskilling themselves to transition into a Data Engineering role.Pipeline-centric – This focus requires more in-depth knowledge working with more complex Data science needs. This type of role is found more often in mid-sized companies as they grow and incorporate a team of Data professionals to help analyze and offer actionable insight for the business. In a nutshell, this role creates a useful format for analysts to gather, collect, and analyze each bit of Data at each stage of development.Database-centric – This role is found most often in larger companies and deals not only with Data warehouses, but is focused on setting up analytics databases. Though there are some elements of the pipeline, this is more fine-tuned. In a nutshell, this role deals with many analysts across a wide distribution of databases. A Fine Balance Between Technical Skills, Soft Skills, and Business Acumen While it’s important for anyone filing this role to have deep knowledge of database design as well as a variety of programming languages, its equally important to understand company objectives. In other words, once the groundwork is laid and the datasets established, it’ll be important to explain what it is the business executives need to know to make the best decisions for their business.  Knowing how and what to communicate to executives, stakeholders, and your Data team also means understanding how to best retrieve and optimize the information for reporting. Depending on your organization’s size, you may need both a Data Analyst or Scientist and a Data Engineer. Though this is less likely in medium and larger enterprises. On the flip side, in order to understand the business’ needs, you’ll also need to be good at creating reliable pipelines, architecting systems and Data stores, and collaborating with your Data Science team to build the right solutions. Each of these skills are meant to help you understand concepts to build real-world systems no matter the size of your business. One Final Thought… Do you like to build things? Tweak systems? Take things apart and see how they work, then put them back together better and more efficient than before? Then Data Engineering might be for you. Are you a business who knows you’re ready to scale up and hire a Data professional? We have a strong candidate pool and may have just the person you need to fill your role. Are you a candidate looking for a role in big Data and analytics? We specialize in junior and senior roles. Check out our current vacancies or contact one of our recruitment consultants to learn more.  For our West Coast Team, call (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.   For our Mid-West and East Coast Teams, call (212) 796 - 6070 or send an email to newyorkinfo@harnham.com.

The Harnham 2019 Data & Analytics Salary Guide Has Arrived

We are thrilled to announce the launch of our 2019 Data & Analytics Salary Guide. With over 1,500 respondents across the USA, this year’s guide is our largest and most insightful yet.  Looking at your responses, it is overwhelmingly clear that the Data & Analytics industry is continuing to thrive. This has led to an incredibly active market with 72% in the US willing to leave their role for the right opportunity.  Salary expectations remain high, although we’re seeing that candidates, on average, expect 10% more than they actually achieve when moving between roles.  We’ve also seen a change in the reasons people give for leaving a position, with a lack of career progression overtaking an uncompetitive salary as the main reason for seeking a change.   There also remains plenty of room for industry improvement when looking at gender parity; the US market is only 23% female, falling to 17% in Data Engineering roles and 16% in the Data Science space.  In addition to our findings, the guide also include insights into a variety of markets and recommendations for both those hiring, and those seeking a new role.  You can download your copy of the guide here.

The Landscape Of The Emerging Biotech Industry And Data Science In HR

One of the latest technologies to emerge to disrupt an industry is Biotechnology. This industry is booming and is no longer confined to universities and research labs. These are the people who build drugs to combat diseases and are expected to comprise a quarter of the market by 2020, less than 6 months from now. So, what does that mean for HR? A Streak of Lightning Across the Life Sciences Biotechnology has grown at an impressive 5% across revenue streams, number of businesses, and number of employees. It is a lightning streak across the Life Sciences and shows no signs of slowing down. In a field expected to corner a quarter of the market as soon as next year, it’s important to have the right people in place. We already know there is a skills gap in the Data Science industry, but the predictions show it's time to upskill the current workforce. Companies will need people who have the right skills and can implement them into action. Technology has disrupted every industry and R&D is no different. This means work life is being redesigned as the Biotech industry demands not only technical and Life Science skills, but also more human skills. The challenge is ensuring businesses understand the impact these technologies will have now, and in the future. If they don’t act, their business could stagnate. It’s important executives see applications at work and implement the changes needed to “keep up with the Joneses” of the tech world. In other words, leaders must find a balance between rapidly advancing technologies and the human insight those technologies provide. Redesign Your Ideal Candidate While digital and analytical skills should be standard for just about any industry, there are other things to consider when interviewing. Hiring Managers, recruiters, and businesses over all, will also be looking for the following ImaginationCuriosityEmotional Intelligence You may not be a doctor exactly, but do still have to deal with people. Organizations will need employees who not only ask why, but take the steps to find the solution, and at the same time can navigate an emotionally charged project such any client-facing research when discussing cancer therapies, for example. Transferable Skills are Key If you pivot well and can learn and understand projects on a dime, then this is a good industry for you. If you’re a business and you want to scale up quickly, it may be best to upskill or reskill, your current employees. With talent scarce in the market, this may be the best solution for you. Building transferable skills, being flexible, and having a strong academic background will help, too. Companies actively working to skill their workforce to work with Machine Learning and Artificial Intelligence technologies are just a few of the trends coursing through the Biotech industry. Add to that the myriad researchers, corporations, and governments focused on combatting diseases using available technologies, and its expected growth could make it one of the most efficient and prosperous industries in the digital landscape. Making HR Data Work for You Businesses are using HR data to see how they can get a deeper understanding of employees as a whole. Are they overwhelmed? Do they need to rest? Do they need to be challenged? Are they bored? How can you, as a business, help them to enhance not only their performance, but that of your business. Finding exciting new recruitment channels Much like you know to go where your customers are, the same holds true today when you’re trying to fill a role. Focus your efforts are on where the talent is, don’t wait for them to come to you. And with the average recruitment process averaging 71 days, the name of the game is “don’t delay” for your perfect candidate may have already moved on to something else. Engaging and motivating staff Think of your employees as internal customers. Engage with them as you would any customer, and make your employee a partner in your vision. Now, it’s easier than ever to measure, improve, and boost employee satisfaction using available data and analytics options. Making learning and development more effective Learning has become a highly personal, adaptive tool offering course selections. Because online courses are so prevalent, it’s much easier for an employee to learn a new skill without time and expense away from the office. The digital transformation of this space shows how data can be used in corporate learning and professional development opportunities. This is where you’ll want to focus some of your energy should you need to upskill or reskill your employees to keep up with demand. Are you a business who knows you’re ready to scale up and hire a data professional? We have a strong candidate pool and may have just the person you need to fill your role. Are you a candidate looking for a role in big data and analytics?  We specialize in junior and senior roles. Check out our current vacancies or contact one of our recruitment consultants to learn more. For our West Coast Team, call (415) 614 - 4999 or send an email to sanfraninfo@harnham.com.  For our Mid-West and East Coast Teams, call (212) 796 - 6070 or send an email to newyorkinfo@harnham.com.

Recently Viewed jobs