Site and Cookie Policy



Site Policy

Access to and use of the Harnham website is subject to the following terms and conditions.


Copyright

Copyright ©  Harnham 2013. All rights reserved. All copy and other intellectual property rights in all text, images, sounds, software and other materials on this site are owned by Harnham, or are included with permission of the relevant owner.

You are permitted to browse this site and to reproduce extracts by way of printing, downloading to a hard disk and by distribution to other people but in all cases, for non-commercial, informational and personal purposes only. No reproduction of any part of this site may be sold or distributed for commercial gain, nor shall it be modified or incorporated in any other work, publication or site. No other licence or right is granted.


Trademarks

All trademarks displayed on this site are either owned or used under licence by Harnham.


Contents

The information on this site has been included in good faith but is for general informational purposes only. It should not be relied on for any specific purpose and no representation or warranty is given as regards its accuracy, completeness or fitness for any particular purpose. Save to the extent that such limitation is not permitted under English Law Harnham, nor any of it's employees shall be liable for any loss, damage or expense arising in contract, tort or otherwise out of any reliance on information contained in this site, access to or use of or inability to use this site or any site linked to it including, without limitation, any loss of profit, indirect, incidental or consequential loss.


Use

Your information and activity on this site must not:

  • be false, inaccurate or misleading
  • be in breach of any applicable laws, regulations, licences, or third party rights
  • interfere in any way with the proper working of this site, and in particular you must not circumvent security, tamper with, hack into or disrupt the operation of the site or surreptitiously intercept, access without authority or expropriate any system, date or personal information as defined in the Data Protection Act 1998.

This site is intended normally to be available 24 hours a day 7 days a week.
You agree to fully reimburse Harnham in respect of all losses, costs, actions, claims, and liabilities incurred by Harnham as a result of any breach or non-observance by you of these terms or any data submitted by you to us.

Harnham will make all reasonable attempts to exclude viruses (and similar destructive devices) from the site but cannot guarantee the exclusion of viruses (and similar destructive devices), and you should take appropriate steps in respect of this risk.


Linked sites

At various points throughout the site, you may be offered automatic links to other internet sites relevant to a particular aspect of this site. This does not indicate that Harnham are necessarily associated with any of these other sites or their owners. While it is the intention of Harnham that you should find these other sites of interest, neither Harnham nor their employees shall have any responsibility or liability of any nature for these other sites or information contained in them.

These terms shall be governed by and construed in accordance with English Law and each party to these terms submits to the exclusive jurisdiction of the English Courts.


Company Registration Number: 05723485.


Registered Address: 3rd Floor, Melbury House, 51 Wimbledon Hill Road, Wimbledon, SW19 7QW.
 
Registered by Companies House, Cardiff.



Cookie Policy


If you are uncertain about what a cookie is have a look at our simple guide to find out how we use them on our website.

What is a cookie?

Cookies are text files containing small amounts of information which are downloaded to your device when you visit a website. Cookies are then sent back to the originating website on each subsequent visit, or to another website that recognises that cookie.

Cookies do lots of different jobs, like letting you navigate between pages efficiently remembering your preferences, and generally improve your web site experience. They can also help to ensure that adverts you see online are more relevant to you and your interests.

We can split cookies into 4 main categories:

  • Category 1: strictly necessary cookies
  • Category 2: performance cookies
  • Category 3: functionality cookies
  • Category 4: targeting cookies or advertising cookies

Category 1 - Strictly necessary cookies

These cookies are essential in order to enable you to move around the website and use its features,
such as accessing secure areas of the website. Without these cookies services you have asked for,
like register for job alerts, cannot be provided.

Please be aware our site uses this type of cookie

Category 2 - Performance cookies

These cookies collect information about how visitors use a website, for instance which pages visitors go to most often, and if they get error messages from web pages. These cookies don’t collect information that identifies a visitor. All information these cookies collect is aggregated and therefore anonymous. It is only used to improve how a website works.

By using our website and online services, you agree that we can place these types of cookies on your device.

Category 3 - Functionality cookies

These cookies allow the website to remember choices you make (such as your user name and password) and provide enhanced, more personal features. These cookies can also be used to remember changes you have made to text size, fonts and other parts of web pages that you can customise. They may also be used to provide services you have asked for such as watching a video or commenting on a blog. The information these cookies collect may be anonymous and they cannot track your browsing activity on other websites.

By using our website and online services, you agree that we can place these types of cookies on your device.

Category 4 - targeting cookies or advertising cookies

These cookies are used to deliver adverts more relevant to you and your interests. They are also used to limit the number of times you see an advertisement as well as help measure the effectiveness of the advertising campaign. They remember that you have visited a website and this information is shared with other organisations such as advertisers. Quite often targeting or advertising cookies will be linked to site functionality provided by the other organisations.

We do have links to other web sites and once you access another site through a link that we have provided it is the responsibility of that site to provide information as to how they use cookies on the respective site.

You can find more information about cookies by visiting www.allaboutcookies.org or
www.youronlinechoices.eu.

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Dave Farmer Appointed New Harnham CEO

I am pleased to announce that Harnham have named David Farmer as our new CEO.  David has been with Harnham since its inception in 2006 and has most recently being serving as COO. With the new appointment, I will be moving into the position of Executive Chairman.  On the move, David says: “I am thrilled to move into this new position at such an exciting time for the company. Having been with the business since the start, I am well aware of Harnham’s potential, particularly as the Data & Analytics market continues to thrive. We have an extraordinary team of home-grown talent at Harnham and I am eager to see where we can take the business next.”   David understands Harnham better than anyone and has dedicated an incredible amount of time and effort towards the success of the business. I cannot think of anyone better to lead us through the next stage of our growth.  This comes at an exciting time for Harnham with Partners Mark Bremer and Sam Jones stepping up to lead the London and New York offices, respectively. Additionally, long-term team members Ross Henderson and Talitha Boitel-Gill have been named Associate Directors and will oversee the growth of various teams within the UK business.  The global leader in Data & Analytics recruitment, Harnham now comprises of 160 people across four offices globally. 

Harnham Launch 2020 Data & Analytics Salary Survey

Harnham Launch 2020 Data & Analytics Salary Survey

I'm excited to announce the launch of our 9th annual Salary Survey.  Covering salaries, diversity, benefits and technologies, our published Salary Guide is known for reflecting and driving trends within the Data & Analytics industry. As ever, we can't put together our guide without your input, so we are extremely grateful to everyone who is able to take part.  This year, one participant will win a £500 Amazon Voucher (or an equivalent amount in your local currency). You can read all the terms and conditions for this here.  The survey takes around 10 minutes and we would love to hear your thoughts. All submissions are 100% confidential and will only be used to provide an overview of the industry as a whole.  You can choose the survey relevant to you below: UK Survey US Survey EU/EEA Survey In the meantime, you can download a copy of last year's completed Salary Guide here.  We look forward to sharing our latest results with you later in the year. 

Data Science Interview Questions: What The Experts Say

Our friends at Data Science Dojo have compiled a list of 101 actual Data Science interview questions that have been asked between 2016-2019 at some of the largest recruiters in the Data Science industry – Amazon, Microsoft, Facebook, Google, Netflix, Expedia, etc.  Data Science is an interdisciplinary field and sits at the intersection of computer science, statistics/mathematics, and domain knowledge. To be able to perform well, one needs to have a good foundation in not one but multiple fields, and it reflects in the interview. They've divided the questions into six categories:  Machine LearningData AnalysisStatistics, Probability, and MathematicsProgrammingSQLExperiential/Behavioural Questions Once you've gone through all the questions, you should have a good understanding of how well you're prepared for your next Data Science interview. Machine Learning As one will expect, Data Science interviews focus heavily on questions that help the company test your concepts, applications, and experience on machine learning. Each question included in this category has been recently asked in one or more actual Data Science interviews at companies such as Amazon, Google, Microsoft, etc. These questions will give you a good sense of what sub-topics appear more often than others. You should also pay close attention to the way these questions are phrased in an interview.  Explain Logistic Regression and its assumptions.Explain Linear Regression and its assumptions.How do you split your data between training and validation?Describe Binary Classification.Explain the working of decision trees.What are different metrics to classify a dataset?What's the role of a cost function?What's the difference between convex and non-convex cost function?Why is it important to know bias-variance trade off while modeling?Why is regularisation used in machine learning models? What are the differences between L1 and L2 regularisation?What's the problem of exploding gradients in machine learning?Is it necessary to use activation functions in neural networks?In what aspects is a box plot different from a histogram?What is cross validation? Why is it used?Can you explain the concept of false positive and false negative?Explain how SVM works.While working at Facebook, you're asked to implement some new features. What type of experiment would you run to implement these features?What techniques can be used to evaluate a Machine Learning model?Why is overfitting a problem in machine learning models? What steps can you take to avoid it?Describe a way to detect anomalies in a given dataset.What are the Naive Bayes fundamentals?What is AUC - ROC Curve?What is K-means?How does the Gradient Boosting algorithm work?Explain advantages and drawbacks of Support Vector Machines (SVM).What is the difference between bagging and boosting?Before building any model, why do we need the feature selection/engineering step?How to deal with unbalanced binary classification?What is the ROC curve and the meaning of sensitivity, specificity, confusion matrix?Why is dimensionality reduction important?What are hyperparameters, how to tune them, how to test and know if they worked for the particular problem?How will you decide whether a customer will buy a product today or not given the income of the customer, location where the customer lives, profession, and gender? Define a machine learning algorithm for this.How will you inspect missing data and when are they important for your analysis?How will you design the heatmap for Uber drivers to provide recommendation on where to wait for passengers? How would you approach this?What are time series forecasting techniques?How does a logistic regression model know what the coefficients are?Explain Principle Component Analysis (PCA) and it's assumptions.Formulate Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) techniques.What are neural networks used for?40. Why is gradient checking important?Is random weight assignment better than assigning same weights to the units in the hidden layer?How to find the F1 score after a model is trained?How many topic modeling techniques do you know of? Explain them briefly.How does a neural network with one layer and one input and output compare to a logistic regression?Why Rectified Linear Unit/ReLU is a good activation function?When using the Gaussian mixture model, how do you know it's applicable?If a Product Manager says that they want to double the number of ads in Facebook's Newsfeed, how would you figure out if this is a good idea or not?What do you know about LSTM?Explain the difference between generative and discriminative algorithms.Can you explain what MapReduce is and how it works? If the model isn't perfect, how would you like to select the threshold so that the model outputs 1 or 0 for label?Are boosting algorithms better than decision trees? If yes, why?What do you think are the important factors in the algorithm Uber uses to assign rides to drivers?How does speech synthesis works? Data Analysis Machine Learning concepts are not the only area in which you'll be tested in the interview. Data pre-processing and data exploration are other areas where you can always expect a few questions. We're grouping all such questions under this category. Data Analysis is the process of evaluating data using analytical and statistical tools to discover useful insights. Once again, all these questions have been recently asked in one or more actual Data Science interviews at the companies listed above.   What are the core steps of the data analysis process?How do you detect if a new observation is an outlier?Facebook wants to analyse why the "likes per user and minutes spent on a platform are increasing, but total number of users are decreasing". How can they do that?If you have a chance to add something to Facebook then how would you measure its success?If you are working at Facebook and you want to detect bogus/fake accounts. How will you go about that?What are anomaly detection methods?How do you solve for multicollinearity?How to optimise marketing spend between various marketing channels?What metrics would you use to track whether Uber's strategy of using paid advertising to acquire customers works?What are the core steps for data preprocessing before applying machine learning algorithms?How do you inspect missing data?How does caching work and how do you use it in Data Science? Statistics, Probability and Mathematics As we've already mentioned, Data Science builds its foundation on statistics and probability concepts. Having a strong foundation in statistics and probability concepts is a requirement for Data Science, and these topics are always brought up in data science interviews. Here is a list of statistics and probability questions that have been asked in actual Data Science interviews. How would you select a representative sample of search queries from 5 million queries?Discuss how to randomly select a sample from a product user population.What is the importance of Markov Chains in Data Science?How do you prove that males are on average taller than females by knowing just gender or height.What is the difference between Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP)?What does P-Value mean?Define Central Limit Theorem (CLT) and it's application?There are six marbles in a bag, one is white. You reach in the bag 100 times. After drawing a marble, it is placed back in the bag. What is the probability of drawing the white marble at least once?Explain Euclidean distance.Define variance.How will you cut a circular cake into eight equal pieces?What is the law of large numbers?How do you weigh nine marbles three times on a balance scale to select the heaviest one?You call three random friends who live in Seattle and ask each independently if it's raining. Each of your friends has a 2/3 chance of telling you the truth and a 1/3 chance of lying. All three say "yes". What's the probability it's actually raining? Explain a probability distribution that is not normal and how to apply that?You have two dice. What is the probability of getting at least one four? Also find out the probability of getting at least one four if you have n dice.Draw the curve log(x+10) Programming When you appear for a data science interview your interviewers are not expecting you to come up with a highly efficient code that takes the lowest resources on computer hardware and executes it quickly. However, they do expect you to be able to use R, Python, or SQL programming languages so that you can access the data sources and at least build prototypes for solutions. You should expect a few programming/coding questions in your data science interviews. You interviewer might want you to write a short piece of code on a whiteboard to assess how comfortable you are with coding, as well as get a feel for how many lines of codes you typically write in a given week.  Here are some programming and coding questions that companies like Amazon, Google, and Microsoft have asked in their Data Science interviews.  Write a function to check whether a particular word is a palindrome or not.Write a program to generate Fibonacci sequence.Explain about string parsing in R languageWrite a sorting algorithm for a numerical dataset in Python.Coding test: moving average Input 10, 20, 30, 10, ... Output: 10, 15, 20, 17.5, ...Write a Python code to return the count of words in a stringHow do you find percentile? Write the code for itWhat is the difference between - (i) Stack and Queue and (ii) Linked list and Array? Structured Query Language (SQL) Real-world data is stored in databases and it ‘travels’ via queries. If there's one language a Data Science professional must know, it's SQL - or “Structured Query Language”. SQL is widely used across all job roles in Data Science and is often a ‘deal-breaker’. SQL questions are placed early on in the hiring process and used for screening. Here are some SQL questions that top companies have asked in their Data Science interviews.  How would you handle NULLs when querying a data set?How will you explain JOIN function in SQL in the simplest possible way?Select all customers who purchased at least two items on two separate days from Amazon.What is the difference between DDL, DML, and DCL?96. Why is Database Normalisation Important?What is the difference between clustered and non-clustered index? Situational/Behavioural Questions Capabilities don’t necessarily guarantee performance. It's for this reason employers ask you situational or behavioural questions in order to assess how you would perform in a given situation. In some cases, a situational or behavioural question would force you to reflect on how you behaved and performed in a past situation. A situational question can help interviewers in assessing your role in a project you might have included in your resume, can reveal whether or not you're a team player, or how you deal with pressure and failure. Situational questions are no less important than any of the technical questions, and it will always help to do some homework beforehand. Recall your experience and be prepared!  Here are some situational/behavioural questions that large tech companies typically ask:    What was the most challenging project you have worked on so far? Can you explain your learning outcomes?According to your judgement, does Data Science differ from Machine Learning?If you're faced with Selection Bias, how will you avoid it?How would you describe Data Science to a Business Executive? If you're looking for new Data Science role, you can find our latest opportunities here.  This article was written by Tooba Mukhtar and Rahim Rasool for Data Science Jojo. It has been republished with permission. You can view the original article, which includes answers to the above questions here. 

The Harnham 2019 Data & Analytics Salary Guide Is Here

We are thrilled to announce the launch of our 2019 UK, US and European Salary Guides. With over 3,000 respondents globally, this year’s guides are our largest and most insightful yet.  Looking at your responses, it is overwhelmingly clear that the Data & Analytics industry is continuing to thrive. This has led to an incredibly active market with 77% of respondents in the UK and Europe, and 72% in the US, willing to leave their role for the right opportunity.  Salary expectations remain high, although we’re seeing that candidates often expect 2-10% more than they actually achieve when moving between roles.  Globally, we’ve also seen a change in the reasons people give for leaving a position, with a lack of career progression overtaking an uncompetitive salary as the main reason for seeking a change.   There also remains plenty of room for industry improvement when looking at gender parity; the UK market is only 25% female and this falls to 23% in the US and 21% across the rest of Europe.  In addition to our findings, the guides also include insights into a variety of markets and recommendations for both those hiring, and those seeking a new role.  You can download your copies of the UK, US and European guides here.

Recently Viewed jobs