Ten Tips for Writing the Perfect Data & Analytics CV

Charlie Waterman our consultant managing the role
Posting date: 4/30/2020 9:34 AM
It’s no secret that jobs within the Data & Analytics market are more competitive than ever and with some jobs having hundreds of applicants (if not more), having a CV that stands out is more important than ever. It’s well known that many Hiring Managers spend a short amount of time reviewing a candidate, so you need to consider what they can do to have the best impact. 

We’ve seen it all over the years, from resumes sorely lacking detail through to those that have almost every accomplishment written over too many pages – so we’ve complied a list of the 10 things that could help you create a resume that makes an impact, complete with top tips from our team of experienced recruiters.

1. Keep it Simple 


All of our recruiters are unanimous in suggesting to candidates that the perfect CV length is no more than two pages, or one for a graduate or more junior candidate. Sam, our Corporate Accounts manager suggests that candidates keep it simple:

“In analytics, it’s all about the detail and less about how fun your CV looks. My best piece of advice would be to keep it to two pages, use the same font without boxes or pictures, and bold titles for the company and role. It sounds pretty simple but it’s really effective and often what our clients seem to be drawn to the most”. 

2. Consider the audience & avoid jargon 


Before your CV gets to the Hiring Manager, it may be screened by an HR or recruitment professional so it’s crucial to ensure that your CV is understandable enough that every person reviewing it could gauge your fit. Whilst showing your technical ability is important, ensure that you save yourself from anything excessively technical meaning only the Hiring Manager could understand what you have been doing. 

3. Showcase your technical skills 


There is, of course, a need to showcase your technical skills. However, you should avoid a long list of technologies, instead clarify your years of experience and competence with each of the tools. Within the Data & Analytics market specifically, clarifying the tools that you used to analyse or model is very important and writing those within your work experience can be very helpful. 

Wesley, who heads up our French team, explained where candidates can often go wrong: 

“Candidates often write technical languages on their CV in long lists and forget to make them come to life. My clients are looking for them to give examples of how and when they have used the listed tools and languages”

4. Consider the impact of your work


Just writing words such as ‘leadership’ or ‘collaboration’ can often easily be over-looked. It’s important that you are able to showcase the impact that you work has beyond the traditionally technical. Think about how you can showcase the projects that you have lead or contributed to and what impact it had on the business. Often people forget the CV isn’t about listing your duties, it’s about listening your accomplishments.  

Ewan, our Nordics Senior Manager brings this to life: “I would always tell someone that whenever you are stating something you did in a job you always follow up with the result of that. For example, ‘I implemented an Acquisition Credit Risk Strategy from start to finish’ – but then adding, ‘which meant that we saw an uplift of 15% of credit card use’”. 

Joe, New York Senior Manager, concurs: “Actionable insights are important, results driven candidates are what our clients are looking for. So instead of ‘Implemented A/B Testing’, I’d get my candidates to make that more commercial, such as ‘Implemented A/B test that result in 80% increase in conversion’”. 

5. Use your Personal Summary 


A personal summary is effective when it comes to technical positions, as some people can often overlook them. Use this to summarise your experience and progression as well as indicate the type of role and opportunity you are looking for. If this is highly tailored to the role you are applying for, it can have an extremely positive impact. For example: 

‘Highly accomplished Data Scientist, with proven experience in both retail and banking environments. Prior experience managing a team of five, and proven ability in both a strategic and hands on capabilities. Proven skills in Machine Learning and Statistical Modelling with advanced knowledge of Python, R and Hadoop. Seeking Data Science Manager role in a fast-paced organisation with data-centric thinking at it’s heart’. 

6. Consider what work and non-work experience is relevant 


If you’ve been working in the commercial technical sphere for more than five years, it’s likely that your part time work experience during university or the non-technical roles that you took before you moved into your space are no longer as relevant. Ensure you are using your space to offer the Hiring Manager recent, relevant and commercially focused information. 

However, do not leave gaps just because you took a role that didn’t relate to your chosen field, you don’t need to describe what you did but have the job title, company and dates to ensure you are highlighting a clear history of your experience. 

It’s important to note that you are more than just your work experience as well, Principal Consultant Conor advises candidates to talk about more than just their work accomplishments:

“Listing non work achievements can help make the CV stand out. If someone has a broad range of achievements and proven drive outside of work, they will probably be good at their job too. Plus, it’s a differentiating point. My clients have found interesting talking points with people who have excelled in sports, instruments, languages and more specifically for the Analytics community – things like maths and Rubik’s cube competitions”. 

7. Don’t forget your education 


For most technical roles, education is an important factor. Ensure that you include your degree and university/college clearly as well as the technical exposure you had within this. If you did not undertake a traditionally technical subject, make sure you highlight further courses and qualifications that you have completed near this section to highlight to the Hiring Manager that you have the relevant level of technical competence for the role. 

8. Don’t include exaggerated statements


It goes without saying that if you are going to detail your experience with a certain technical tool or software that you could be asked to evidence it. Saying your proficient in R when you’ve done a few courses on it won’t go over well, especially if there are technical tests involved in the interview process. At the same time, don’t undervalue your expertise in certain areas either, your strengths are what the Hiring Managers is looking for. 

9. Don’t get too creative


Unless you’re in a creative role it’s unlikely that the Hiring Manager will be looking for something unique when it comes to the CV. In fact, very few people can pull of an overly flashy CV, most of them being those that work specifically in design. When in doubt, stick to standard templates and muted tones. 

10. Tailor, Tailor, Tailor! 


Time is of the essence and when it comes to reviewing CVs and you don’t have long to make an impact. Make sure to customise your resume using keywords and phrases that match the job description (if they match your own, of course). 

For example, if the role is looking for a Business Intelligence Analyst with proven skills in Tableau you would not just claim, “experience in Data Visualisation”, you’d list the software name, “experience in Tableau based Data Visualisation”. 

Although every job description is different, all it takes is a few small tweaks to ensure your maximising your skillset. 

If you're looking for your next Data & Analytics role or are seeking the best candidates on the market, we may be able to help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more. 

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

Webinar: Virtual Recruitment & Onboarding in Times of Change

For our latest LinkedIn Live, we spoke to Alex Kudelka, VP of Revenue at Doodle, Sarah Ogorevc, National Manager, Campus Recruitment at Deloitte Canada, and Nahal Mustafa, Senior Org Development Specialist at Klarna, as well as our own Head of IR, Charlie Waterman. Discussing how tech can support businesses during COVID-19, what this means for hiring and those just joining the workforce, and how you can support and retain your teams during lockdown, this fascinating conversation is well worth a watch for anyone looking to recruit or onboard remotely.  Here's what they had to say:

The Search For Toilet Paper: A Q&A With The Data Society

We recently spoke Nisha Iyer, Head of Data Science, and Nupur Neti, a Data Scientist from Data Society.  Founded in 2014, Data Society consult and offer tailored Data Science training for businesses and organisations across the US. With an adaptable back-end model, they create training programs that are not only tailored when it comes to content, but also incorporate a company’s own Data to create real-life situations to work with.  However, recently they’ve been looking into another area: toilet paper.  Following mass, ill-informed, stock-piling as countries began to go into lockdown, toilet paper became one of a number of items that were suddenly unavailable. And, with a global pandemic declared, Data Society were one of a number of Data Science organisations who were looking to help anyway they could.  “When this Pandemic hit, we began thinking how could we help?” says Iyer. “There’s a lot of ways Data Scientists could get involved with this but our first thought was about how people were freaking out about toilet paper. That was the base of how we started, as kind of a joke. But then we realised we already had an app in place that could help.” The app in question began life as a project for the World Central Kitchen (WCK), a non-profit who help support communities after natural disasters occur.  With the need to go out and get nutritionally viable supplies upon arriving at a new location, WCK teams needed to know which local grocery stores had the most stock available.  “We were working with World Central Kitchen as a side project. What we built was an app that supposed to help locate resources during disasters. So we already had the base done.” The app in question allows the user to select their location and the products they are after. It then provides information on where you can get each item, and what their nutritional values are, with the aim of improving turnaround time for volunteers.  One of the original Data Scientists, Nupur Neti, explained how they built the platform: “We used a combination of R and Python to build the back-end processing and R Shiny to build the web application. We also included Google APIs that took your location and could find the closest store to you. Then, once you have the product and the sizes, we had an internal ranking algorithm which could rank the products selected based on optimisation, originally were based on nutritional value.”  The team figured that the same technology could help in the current situation, ranking based on stock levels rather than nutritional value. With an updated app, Iyer notes “People won’t have to go miles and stand in lines where they are not socially distancing. They’ll know to visit a local grocery store that does have what they need in stock, that they’ve probably not even thought of before.” However, creating an updated version presented its own challenges. Whereas the WCK app utilised static Data, this version has to rely on real-time Data. Unfortunately this isn’t as easy to come by, as Iyer knows too well:  “When we were building this for the nutrition app we reached out to groceries stores and got some responses for static Data. Now, we know there is real-time Data on stock levels because they’re scanning products in and out. Where is that inventory though? We don’t know.” After putting an article out asking for help finding live Data, crowdsourcing app OurStreets got in touch. They, like Data Society, were looking to help people find groceries in short supply. But, with a robust front and back-end in place, the app already live, and submissions flying in across the States, they were looking for a Data Science team who could make something of their findings.  “We have the opportunity,” says Iyer “to take the conceptual ideas behind our app and work with OurStreets robust framework to create a tool that could be used nationwide.” Before visiting a store, app users select what they are looking for. This allows them to check off what the store has against their expectations, as well as uploading a picture of what is available. They can also report on whether the store is effectively practising social distancing. Neti explains, that this Data holds lots of possibilities for their Data Science team: “Once we take their Data, our system will clean any submitted text using NLP and utilise image recognition on submitted pictures using Deep Learning. This quality Data, paired with the Social Distancing information, will allow us to gain better insights into how and what people are shopping for. We’ll then be able to look at trends, see what people are shopping for and where. Ultimately, it will also allow us to make recommendations as to where people should then go if they are looking for a product.”  In addition to crowdsourced information, Data Society are still keen to get their hands on any real-time Data that supermarkets have to offer. If you know where they could get their hands on it, you can get in touch with their team.  Outside of their current projects, Iyer remains optimistic for the world when it emerges from the current situation: “Things will return to normal. As dark a time as this is, I think it’s going to exemplify why people need to use Artificial Intelligence and Data Science more. If this type of app is publicised during the Coronavirus, maybe more people will understand the power of what Data and Data Science can do and more companies that are slow adaptors will see this and see how it could be helpful to their industry.”   If you want to make the world a better place using Data, we may have a role for you, including a number of remote opportunities. Or, if you’re looking to expand and build out your team with the best minds in Data, get in touch with one of expert consultants who will be able to advise on the best remote and long-term processes. 

RELATED Jobs

Salary

US$150000 - US$200000 per annum + bonus & equity & benefits

Location

Los Angeles, California

Description

A very exciting R&D focused role within a well funded start up with huge impact potential

Salary

US$195080 - US$231657 per annum + Benefits

Location

Miami, Florida

Description

A horse racing giant are looking for a Lead Data Engineer to join them in the heart of Miami! Click below to apply!

Salary

£55000 - £70000 per annum + Additional Benefits

Location

London

Description

Data Engineer - Python, AWS, Spark - Insurance (Remote Working)

recently viewed jobs