What Does The Fourth Industrial Revolution Look Like?

Krishen Patel our consultant managing the role
Posting date: 3/5/2020 10:25 AM
We’re in the next stage of the fourth Industrial Revolution and technologies continue to merge. No longer is advancement as simple as adding “tech” to the end of a word - sorry Fintech, InsurTech, HRTech, and the rest.

Now technologies stand together as each becomes a separate piece of how tech operates in the business world. AI and IoT have merged to become AIoT. Data is as much commodity as it is information to fuel business growth. Computer Vision partnered with AI is teaching computers to convert their ones and zeros to images humans take for granted.  

In a word, it’s a transformative time for every industry and every industry is taking advantage of the benefits in one way or another. Smart manufacturing. Human Resources. Marketing. Even insurance has joined the party.

But, with so many advancements, we thought we’d take a look at just the tip of the iceberg, starting with A, B, and C. 

AI Meets IoT 


We’ve all heard how AI and the Internet of Things (wearable and smart devices etc.) are being used in the Health sector. With the kind of real-time Data available, patients, insurers, and medical professionals can map out health plans based on wearable devices to track patient health and encourage preventative care. 

Indeed, one insurance company is embracing these Data trends to ramp up the speed and efficiency of their data. Using Machine Learning and IoT sensors to develop an AI-based solution, customer information is used to match clients with the right policies tailored to their needs. 

Car insurance is another industry to benefit. Insurers are able to collect real-time driving data which they can analyse to determine risk or offer discounted policies for good driving. This kind of information can also be used to revisit and reconstruct accident scenes to figure out what happened and who’s at fault. 

Big Data, Big Money


We’ve all heard the phrase ‘Data Is The New Oil’ by now, which I’m sure we can all agree, just means Data is a resource everybody wants and is willing to pay a lot for. But the differences between Data and Oil are two-fold; Data has the potential to be infinite, and it tells us about what oil cannot; the human experience. 

Cloud technologies, edge hardware, and the IoT have helped shape the digitisation of objects, people, and organisations. From sensors to wearable devices, more and more data is being collected, allowing us to be more connected than ever before. It’s also providing more information to the tech giants than ever before. For example, Amazon’s Ring doorbell is logging every motion around it and can pinpoint the time to millisecond.  

Add these technologies to Natural Language Processing (NLP) and watch the world around us draw value from and understand our Data like never before. The wave of Big Data value shows no signs of slowing down.

Computer Vision in Business


In the last few years, Computer Vision has been making great strides in the business world. Yet the Data required for processing power and memory can still be impacted by image quality. The opportunities  are alive with possibility and, from small businesses to enterprise solutions, Computer Vision has seen a variety of industries finding practical business uses. 

Below are just a few additional areas Computer Vision is making its mark.

  • Facial Recognition – providing surveillance and security systems in such areas as police work, payment portals, and retail stores.
  • Digital Marketing – sorting and analysing online images to target ad campaigns to the right audiences.
  • Financial Institutions –preventing fraud, allowing mobile deposits, analysing handwriting, and beyond.

With the global market for fourth industry technologies predicted to be between $17.4 billion and $48.32 billion by 2023, now is the time to find your focus within the industry. 

Ready to take the next step in your career? Whether you’re interested in AI, Big Data and Analytics, Computer Vision or more, we may have a role for you.

Take a look at our current opportunities or get in touch with one of our expert consultants to find out more.  

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

What defines a Data Architect?

Data Analyst. Data Wrangler. Data Architect? If you like pulling together threads of a company’s Data into one cohesive point, you may want to consider a Data Architect role. But what exactly is a Data Architect and how does it differ from a Data Engineer? Data Architect vs. Data Engineer As businesses continue to combine their Data and business strategies into one, they are beginning to understand to the need for a variety of Data Analysts. But as important as it is to have someone build your platform and begin pipeline processes, there is also need for someone with vision. Someone who can see patterns and designs. Someone who has end-to-end vision and can see how the patterns flow through your processes. This is your Data Architect. Data Engineers, on the other hand, lay the foundation for your Data platform. They draft the blueprint. After all, you can’t build a house without a blueprint first, right? The Data Engineer is at the beginning of the process, so the rest of the team can do their parts. But it’s the Data Architect who pulls it all together. THE ROLE OF THE DATA ARCHITECT  If you’re considering your next career move and wondering if Data Architecture is for you, here are some typical requirements. A typical Data Architect will: Meet with stakeholders to understand business needs and translate them into technical requirements using ETL techniques to develop Data ArchitectureUnderstand their full Data lifecycle to provide technical architecture leadershipDesign a real-time data pipeline ecosystem and how to make it scalable usingDevelop Big Data Architecture in an AWS environmentBe educated to a degree level in a numerate discipline (Mathematics, Statistics, Computer Science, Computer Engineering)• Have proven experience in a commercial environmentHave advanced Cloud Computing Ecosystem experience with AWS (GCP or Azure also considered)Have proven Big Data Ecosystem experienceHave proven Big Data Architecture experience in a commercial environment Have proven Data Engineering experience in a commercial environment Though the likes of Google, IBM, and others have ramped up their education efforts, and online courses traditional universities offer a variety of Data Science degrees, there is still a shortage of professionals in the industry. So can businesses simplify and automate processes without the right people in place? Businesses Step Up Their Data Strategies Though there are easier ways to get the information a business needs through rented predictive modelling or an already drafted Data Science model, it doesn’t give the true value of Data. Add in new regulations, requirements, and new Data which offer new insights, and the impact on business is profound.   It’s time for business to start ensuring that their Data teams are treated as critically as possible. Time to lay a path of progression, a pipeline, of systems and processes for the creation and production of Data. After all, simply optimising your Data will only get you so far. Enterprise-wide Data systems are more than wrangling and analysing Data.  Most importantly, businesses need to ensure they have the right people in place. They also need to understand what they need and why they need it. This is a key part of Data Strategy and with the right people in place, can put your business ahead of the competition.  Digging Deeper into Requirements for Top Talent While the standard requirements for a Data professional are to be educated to a degree level in things like Computer Science and Mathematics, technical skills, and experience within certain industries, for the natural progression from Data Analyst to Data Architect, there’s a bit more nuance to consider. Whether your business is just getting started in Data Science or you’re ready to start growing an existing team, there are some things you may want to focus on when looking for your Data Architect role. Define and determine how to keep projects streamlined with repeatable processes. Pivot between guiding team members through the pipeline and explaining insights to executives and stakeholders. Determine the right format for the right project. Determine when and when not to use automation to integrate Data. Visualise and extract models to predict future events and describe the process. In other words, be able to interpret Data to ensure reliability of the best approach. With the right talent in place, your teams can collaborate and build on their shared expertise to ensure Data is analysed and understood to the best benefit of your business. If you like solving puzzles, pulling disparate threads together into organised systems, and have experience as analysing and collecting Data, we may have a role for you.  Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.  

3 Ways Machine Learning Is Benefiting Your Healthcare

With Data-led roles leading the list in the World Economic Forum’s ‘Jobs of the Future’ report, it is no surprise that Data Science continues to be the main driving force behind a number of technological advancements. From the Natural Language Processing (NLP) that powers your Google Assistant, to Computer Vision identifying scanning pictures for specific objects and the Deep Learning techniques exploring the capability of computers to become “human”, innovation is everywhere.  It’s unsurprising, then, that the world of healthcare is fascinated by the possibilities Data Science can offer,  possibilities which could not only make your and my life better, but also save several thousands of lives around the world. To just scrape the surface, here are three examples of how Machine Learning (ML) techniques are being used to benefit our healthcare.  COMPUTER VISION FOR IMAGING DIAGNOSTICS  Have you ever had a broken leg or arm and saw a x-ray scan of your fracture? Can you remember how the doctor described the kind of fracture to you and explained where exactly you can see it in the picture? The same thing that your doctor did a few years ago, can now be done by an algorithm that will identify the type of fracture, and provide insights into how you should treat it. And it’s not just fractures; Google's AI DeepMind can spot breast cancer as well as your radiologist. By feeding a Machine Learning model the mammograms of 76,000 British women, Google’s engineers taught the system to spot breast cancer in a screen scan. The result? A system as accurate as any radiologist.  We‘ve already reached the point where Machine Learning and AI can no longer just outsmart us at a board game, but can benefit our everyday lives, including in as sensitive use-cases as the healthcare industry. NLP AS YOUR PERSONAL HEALTH ASSISTANT  When we go to our GP, we go to see someone with a medical education and clinical understanding who can evaluate our health problems. We go there because we trust in the education of this person and their ability to give us the best information possible. However, thanks to the rise of the internet, we’ve turned to search engines and WebMD to self-diagnose online, often reading blogs and forums that will convince us we have cancer instead of a common cold.  Fortunately, technology has advanced to the point where it can assist with an on-the-spot (much more accurate) evaluation of your medical condition. By conversing with an AI, like the one from Babylon Health, we can gain insights into possible health problem, define the next steps we need to take and know whether or not we need to see a doctor in person.  There’s no need to wait for opening times or to sit bored in a waiting room. Easy access from your phone democratises the process and advice can be received by anyone, at any time.    DEEP LEARNING DRAWS CONCLUSIONS BETWEEN MEDICAL STUDIES Despite their extensive qualifications, even medical researchers can feel overwhelmed by the sheer amount of Insights and Data that are gathered around the world in hospitals, labs, and across various studies. No wonder it’s not uncommon for important Insights and Data to get forgotten in the mix. Once again, Machine Learning can help us out. Instead of getting lost in a sea of medical data, ML algorithms can dig deep and find the information medical researchers really need. By efficiently sifting a through vast amounts of medical data, combining certain datasets and providing insights, ML sources ways for treatments to be improved, medicines to be altered, and, as a result, can save lives. And this is only the beginning. As Machine Learning continues to improve we can expect huge advances in the following years, from robotic surgery to automated hospitals and beyond. If you’re an expert in Machine Learning, we may have a job for you. Take a look at our latest opportunities of get in touch with one of our expert consultants to find out more. 

RELATED Jobs

Salary

£45000 - £60000 per annum + Competitive Benefits

Location

London

Description

Are you looking to join one of the UK's most renowned retailers as a Data Scientist, where you will be working to build algorithms for huge data sets?

Salary

£65000 - £70000 per annum

Location

City of London, London

Description

Do you want to work for an exciting new product at the forefront of AI backed heavily by investment?

Salary

€55000 - €65000 per annum + competitive benefits package

Location

Vilnius, Vilnius County

Description

A chance to take over a Data Science team and really make a different worldwide!

recently viewed jobs