Machine Learning: How AI Learns

Luke Frost our consultant managing the role
Author: Luke Frost
Posting date: 7/4/2019 8:47 AM
Amazon has begun curating summer reading lists. How? Patterns. Facebook shows you ads for items you may have been searching for online. How? It learns from your browsing habits. Ever wondered how Facebook knows you were just looking at that pair of shoes or that particular guitar. The Data you feed it, feeds its brain. In other words, this is how Artificial Intelligence learns. Machine Learning.

Whilst it can be disconcerting to know that a machine understands our buying habits, that’s not the only thing it’s used for. It’s also a pivotal tool in such areas as Bionformatics, Biostatistics, Computational Biology, Robotics, and more. 

What is Machine Learning?


Ultimately, it’s a method of Data Analysis which helps to automate model building and is part of Artificial Intelligence. In other words, it helps to solve Computational Biology problems by learning from Data to identify patterns and make decisions with little human intervention.

This helps scientific researchers learn about many aspects of biology. However, running a Machine Learning project can be difficult for beginners, who may experience issues when trying to navigate the information without making mistakes or second guessing themselves. This is one of the reasons a Computational Biologist might want to upskill with a course or two in Machine Learning for a more robust understanding of the information being learned and applied. 

The Good News and the Bad


With each shift of industrial revolution, there has been one system which has made an indelible mark on our daily lives and the Fourth Industrial Revolution is no different. Just like we can no longer imagine factories without assembly lines, we can also no longer imagine not having Siri, Google Maps, or online recommendations. But, as exciting and as important as these things are, Machine Learning has become so crucial to our daily lives, so complex, it takes a technology expert to master it leaving it nearly inaccessible to those who could benefit from it.

Why is Machine Learning Important?


By building models to peel back the layers and discover connections, organisations can more easily and more quickly make improved decisions with little to no human intervention. Computational processing is both more affordable and more powerful. It’s possible to quickly scale and produce models which can analyse bigger and more complex data and there’s also a chance to identify opportunities and to help avoid any unknowns such as risk.

Machine Learning is used in every industry from Retail to Financial Services to Healthcare. Here are just a few ways it has already transformed our world.

  • Retail – Retailers are able to learn from their customers buying habits, predictive buying habits, how to personalise a shopping experience, price optimisation, and customer insights.
  • Financial services – Machine Learning helps to prevent fraud and identify Data insights.
  • Healthcare – Wearable devices allow for real-time data to assess a patient’s health. Medical professionals can also more quickly find red flags which can help improve diagnoses and treatment.
  • Oil and gas – It cannot only help find where oil might be, but also predict refinery sensory failure, and streamline distribution.
  • Transportation – Help to make routes more efficient and predict problems that could affect the bottom line. While humans can create at least one or two models a week; Machine Learning can create thousands. 

Ultimately, the goal of Machine Learning is to understand the structure of Data. As it learns to determine what Data is needed for its structure, it can be easily automated and sift through Data until a pattern is found. This is how machines learn.

If you’re looking to take your next step in the field of Machine Learning, we may have a role for you. Take a look at our latest opportunities, or get in touch to see if we can help you take that next step.

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

The Search For Toilet Paper: A Q&A With The Data Society

We recently spoke Nisha Iyer, Head of Data Science, and Nupur Neti, a Data Scientist from Data Society.  Founded in 2014, Data Society consult and offer tailored Data Science training for businesses and organisations across the US. With an adaptable back-end model, they create training programs that are not only tailored when it comes to content, but also incorporate a company’s own Data to create real-life situations to work with.  However, recently they’ve been looking into another area: toilet paper.  Following mass, ill-informed, stock-piling as countries began to go into lockdown, toilet paper became one of a number of items that were suddenly unavailable. And, with a global pandemic declared, Data Society were one of a number of Data Science organisations who were looking to help anyway they could.  “When this Pandemic hit, we began thinking how could we help?” says Iyer. “There’s a lot of ways Data Scientists could get involved with this but our first thought was about how people were freaking out about toilet paper. That was the base of how we started, as kind of a joke. But then we realised we already had an app in place that could help.” The app in question began life as a project for the World Central Kitchen (WCK), a non-profit who help support communities after natural disasters occur.  With the need to go out and get nutritionally viable supplies upon arriving at a new location, WCK teams needed to know which local grocery stores had the most stock available.  “We were working with World Central Kitchen as a side project. What we built was an app that supposed to help locate resources during disasters. So we already had the base done.” The app in question allows the user to select their location and the products they are after. It then provides information on where you can get each item, and what their nutritional values are, with the aim of improving turnaround time for volunteers.  One of the original Data Scientists, Nupur Neti, explained how they built the platform: “We used a combination of R and Python to build the back-end processing and R Shiny to build the web application. We also included Google APIs that took your location and could find the closest store to you. Then, once you have the product and the sizes, we had an internal ranking algorithm which could rank the products selected based on optimisation, originally were based on nutritional value.”  The team figured that the same technology could help in the current situation, ranking based on stock levels rather than nutritional value. With an updated app, Iyer notes “People won’t have to go miles and stand in lines where they are not socially distancing. They’ll know to visit a local grocery store that does have what they need in stock, that they’ve probably not even thought of before.” However, creating an updated version presented its own challenges. Whereas the WCK app utilised static Data, this version has to rely on real-time Data. Unfortunately this isn’t as easy to come by, as Iyer knows too well:  “When we were building this for the nutrition app we reached out to groceries stores and got some responses for static Data. Now, we know there is real-time Data on stock levels because they’re scanning products in and out. Where is that inventory though? We don’t know.” After putting an article out asking for help finding live Data, crowdsourcing app OurStreets got in touch. They, like Data Society, were looking to help people find groceries in short supply. But, with a robust front and back-end in place, the app already live, and submissions flying in across the States, they were looking for a Data Science team who could make something of their findings.  “We have the opportunity,” says Iyer “to take the conceptual ideas behind our app and work with OurStreets robust framework to create a tool that could be used nationwide.” Before visiting a store, app users select what they are looking for. This allows them to check off what the store has against their expectations, as well as uploading a picture of what is available. They can also report on whether the store is effectively practising social distancing. Neti explains, that this Data holds lots of possibilities for their Data Science team: “Once we take their Data, our system will clean any submitted text using NLP and utilise image recognition on submitted pictures using Deep Learning. This quality Data, paired with the Social Distancing information, will allow us to gain better insights into how and what people are shopping for. We’ll then be able to look at trends, see what people are shopping for and where. Ultimately, it will also allow us to make recommendations as to where people should then go if they are looking for a product.”  In addition to crowdsourced information, Data Society are still keen to get their hands on any real-time Data that supermarkets have to offer. If you know where they could get their hands on it, you can get in touch with their team.  Outside of their current projects, Iyer remains optimistic for the world when it emerges from the current situation: “Things will return to normal. As dark a time as this is, I think it’s going to exemplify why people need to use Artificial Intelligence and Data Science more. If this type of app is publicised during the Coronavirus, maybe more people will understand the power of what Data and Data Science can do and more companies that are slow adaptors will see this and see how it could be helpful to their industry.”   If you want to make the world a better place using Data, we may have a role for you, including a number of remote opportunities. Or, if you’re looking to expand and build out your team with the best minds in Data, get in touch with one of expert consultants who will be able to advise on the best remote and long-term processes. 

Why Businesses Need To Put Fraud Prevention Front And Centre

If Fraudsters are anything, they are opportunists. Once the first new stories about COVID-19 started running, it wasn’t long until they were joined by tales of fraudsters selling face masks and hand sanitiser, asking panicked customers to transfer money and then disappearing without a trace.  And it’s not the first time we’ve seen this. Fraudsters are notoriously wise to periods of heightened sensitivity and uncertainty, often preying on the vulnerable. The 2008 financial crisis saw an increase in email-based phishing scams and a decade’s worth of technological advancements means that Fraud remains a many-headed beast.  Add into the mix a change in working styles and environments, and many businesses are more exposed to potential security breaches than they have been in years. Now, more than ever, companies need to make sure their Data is well protected and secure. THE FIRST LINE OF DEFENCE If you’re part of, or leading, a Fraud Prevention team, there are a number of ways you can support your business and keep on top of the situation. Here are just a few: Increase and update your investigation capacity. This team are the front line of your business’ Fraud defence team, interacting with customers daily and spotting new scams. During an uncertain period, retention and team stability is key. These are the people that understand the day-to-day Fraud challenges you face and will be essential in fighting any future challenges.  Sharing Fraud Prevention knowledge is key. Throughout this crisis, trends will be evolving quickly and working collaboratively across teams, and even other businesses, is the best way to combat this. We consistently hear from Fraud Managers that the key to beating Fraud is to share information and knowledge. Despite this, there is always a hesitation amongst companies to admit that they have been a victim to an attack. Perhaps now is the time to change this. Invest in Machine Learning and real time updates for your Fraud defences. Fraud technology has moved on from script writing in SQL and rule changes. Businesses need a real time reactive response and now is an important time to be embracing new technologies. There are a number AI-driven off the shelf packages available or, for a more bespoke solution, a Fraud Data Scientist can create something internally. Educate your team. It may seem simple, but the Fraud team can play a crucial role in minimising any potential risk from human-error. Educating employees on the risks they may face when working remotely, or what scams they need to look out for, is one of the most effective ways of fighting Fraud.  PREPARING YOUR BUSINESS Success in the fight against Fraud isn’t purely down to the group of individuals that make up the Fraud team. As a business, now is the time to be making decisions that can help you stay ahead of the Fraudsters. Here are some considerations: Consider investing in tech as an your immediate response. Not just to bolster your Fraud defences (although there are plenty of vendors offering AI-based solutions), but also technology for your employees to keep work as normal as possible such a sharing platforms, DevOps technology and video calling networks. One of the best ways to block some of the vulnerability loopholes fraudsters are trying to exploit is to keep working habits as close to normal as possible as you move to a remote solution. Be transparent with your customers. Consumers are being incredibly savvy and noting how businesses respond to the pandemic in a way that could have a big impact when normality returns. But they’re also being more empathetic and are willing to understand difficulties. For example, shopping delivery service Ocado were open and transparent when their system could not initially deal with demand. Having communicated the difficulties, worked through their issues and gone the extra mile to let customers know how they can be supported in this time, the received minimal backlash. There is an understanding that we’re all in this together. Finally, if you have the budget, continue to staff up - particularly in competitive fields such as Data Science. A lot of top Data professionals are currently at home and much more accessible than they have been in a long time. With a number of ways to remotely interview and onboard both permanent and contract staff, if you are able to get begin conversations with them now, you’ll have an edge in what will be a very competitive market come later in the year.  If you’re looking to take your next step in the world of Fraud, we may have a role for you, including a number of remote opportunities.  Or, if you’re looking to expand and build out your Fraud team, get in touch with one of expert consultants who will be able to advise on the best remote and long-term processes. 

RELATED Jobs

Salary

£80000 - £90000 per annum + + BONUS + BENEFITS

Location

City of London, London

Description

Incredible opportunity to join a rapid-growth company who are set to take the data world by storm. Tech: Python, Pandas, NumPy, Docker, Tensorflow, AWS

Salary

£60000 - £70000 per annum

Location

London

Description

Global travel company working across multiple products are looking for a computer vision engineer to work on an exciting new project!

Salary

US$160000 - US$190000 per annum + additional benefits

Location

San Diego, California

Description

Join a growing team of over 20 computer vision and machine learning engineers!

recently viewed jobs