How Data Is Shifting Defence

William Thomson our consultant managing the role
Posting date: 7/31/2019 9:55 AM
When looking at the cyber security measures in 2019 the outcome is uncertain. Threats come in the form of pariah states, extremely skilled individuals, and illiberal actors. However, what is certain is the leaps and bounds made in technology. 

Before computers, defence documents were in government offices. By the Second World War this would progress onto secure sites, take Bletchley Park for example.  

The real watershed would come years later in the Cold War. While there was no direct military action (aside from the proxy Korean and Vietnam War), this tension was illustrated elsewhere, with the space race and nuclear armaments to name but a few. Both sides went to extraordinary lengths to guard and seize intelligence through covert ops. As this classified information made its way onto computers and in turn brought about new risks. This theme continues to the present day; as technology improves, so do offensive and defensive capabilities. 

Hard Power


With the advancement in technology this has been used by militaries to take and saves lives. Only a matter of years ago aerial bombardment would have to involve putting pilots at risk, flying deep behind enemy lines. These days, a bombing run could be carried out anywhere in the globe with the ‘pilot’ not having to leave their chair. How? Through Unmanned Aerial Vehicles (UAVs). This removes any casualties to their pilots, using advanced systems in Computer Vision to operate across the globe. 

The ethics of this remain debated and there are many who express doubts at the use of AI, fearing their destructive potential. Others, however, see this as necessary advancement. 

Indeed, in asymmetric warfare, established states’ advanced technology is near enough untouchable. Take an example from the US Marines. Still in testing, an advanced platform can allow troops on the ground to see if a room has been cleared, saving friendly lives. This is way above the capabilities of rogue terrorist forces, and looks set to play a crucial role in saving lives. It would seem highly unlikely that the Taliban, for example, could use sophisticated weaponry to bring down a jet. 

However, the danger in 2019 now lies with the established illiberal states who still pose a serious threat. It is paramount that nations continue to advance, to both deter and, if needed, counter a hostile force.

Soft Power


While NATO states have shown dominance in physical terms over past foes, 2019 brings uncertainty when it comes to soft power, most notably cyber-security. The threats to this are very real, and are a put civilians at risk - take the Sony and NHS hackings as an example. 

Moreover, the notion of alleged election meddling continues to plague politics, notably the US 2016 Election and the Brexit referendum. There have been several accusations of state-sponsored foul play incorporating the use of bots to influence people’s decision making, mostly through continual pressure on either fake news or mass-support of certain decisions. They impact society directly into our homes, considering the popularity of social media platforms like Twitter and Facebook.

Alongside many other nations, the UK is taking action to counter this type of threat. Only recently a specialist cyber-security division in the army has been established, quite literally to both counter, and if needed, launch cyber-attacks.  

Ultimately, society has come a long way, physically and online when it comes to defence. Sophisticated weaponry continues to develop but is raising new ethical questions, particularly in regards to the use of AI and Computer Vision. Civilian institutions remain at risk, with many having been targeted in hacks or through intervention on social media. Threats may continue to evolve, but so will defence strategies, with the two competing to stay one step ahead of the other.  

If you’re interested in applying Data & Analytics to national security, we may have a role for you. Take a look at our latest opportunities, or get in touch with one of our expert consultants to find out more. 

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

Data Science For Business Decision Making

All strong and successful businesses are built and run upon well-informed decision-making, which derive from a mix of leader experience, industry knowledge and, more recently, the regular implementation and use of advanced Data Science teams.  While the use of data has been around for many years, it’s hard to believe that it is only in the last five years or so that we have seen the adoption of such technology and skills really take off. Five years ago, the importance and demand for Data Scientists sat at a very meagre 17 per cent, whereas in 2019, we saw exponential growth of over 40 per cent – a number that is expected to continue growing as we move forward.  Within Data & Analytics, Data Science is a crucial arm within many businesses of all shapes and sizes. Through the collection and analysis of certain datasets, Data Science teams can delve into an organisation’s pain points, any potential obstacles and future predictions; crucial elements which, if looked at and planned for in advance, can be the making of a business.  So, how else can Data Science influence the decision-making process and make a positive impact on a business and its bottom line? The removal of bias and the increase of accuracy As humans we are innately susceptible to bias, conscious and unconscious, and this can be a hindrance on our ability to make informed yet impartial decisions. By relying solely on facts and figures instead of our own opinions, we are not only removing bias, but we are in turn making the decision-making process more accurate.  Accuracy within decision-making will remove the potential risk of mistakes and the need to re-do tasks, therefore saving precious time, resource and money, unequivocally a benefit for any business’s bottom line.  Efficiency There are elements of all businesses that require trial and error for example, hiring practices. People who look great on paper and perform exceptionally well in first interview may turn out to be utterly the wrong fit six months down the line. However,  collecting and recording data of those employees who do fit well into the business, compared to those who don’t, can help to reduce the chance of choosing the wrong candidate. This in turn improves staff retention rates, helps create a positive work culture and, of course, positively impacts profitability.  Considering the cost for hiring one person for a company is around £3,000, Data Science is of huge benefit to any company, large or small, in reducing the risk of high staff turnover.  Mitigating risk All businesses at some point in their lifetime will come up against potential obstacles and risks that, if not managed properly, can be potentially lethal. The implementation of Data Science will allow senior leaders to learn from past mistakes and create evidence-based plans to better tackle, or completely avoid, similar problems in the future.  This could be for either organisational risk or strategic risk, both of which can be extremely damaging if not prepared for. Organisational risk entails problems occurring within daily business tasks such as fraud, data loss, equipment and IT issues and staff resignations. Strategic risk relates to events that cannot be planned for in advance; those sudden and unforeseeable changes - a great example being the current COVID-19 pandemic.  However, with both risk groups, Data Scientists can help to mitigate these risks through learnings and observations made from reams of previous data, as well as real-time intelligence. This allows senior leaders to act fast where needed, and plan where possible.  Data & Analytics, and especially Data Science, has been, and will continue to be, a key driver in the evolution of many industries worldwide. As we move forward, we will undoubtedly see an even larger uptake of the available technologies as business leaders everywhere begin to see the influential value of data-driven decision-making. If you’re a Data Scientist looking to take a step up or are looking for the next member of your team, we may be able to help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.

Using Data Ethically To Guide Digital Transformation

Over the past few years, the uptick in the number of companies putting more budget behind digital transformation has been significant. However, since the start of 2020 and the outbreak of the coronavirus pandemic, this number has accelerated on an unprecedented scale. Companies have been forced to re-evaluate  their systems and services to make them more efficient, effective and financially viable in order to stay competitive in this time of crisis. These changes help to support internal operational agility and learn about customers' needs and wants to create a much more personalised customer experience.  However, despite the vast amount of good these systems can do for companies' offerings, a lot of them, such as AI and machine learning, are inherently data driven. Therefore, these systems run a high risk of breaching ethical conducts, such as privacy and security leaks or serious issues with bias, if not created, developed and managed properly.  So, what can businesses do to ensure their digital transformation efforts are implemented in the most ethical way possible? Implement ways to reduce bias From Twitter opting to show a white person in a photo instead of a black person, soap dispensers not recognising black hands and women being perpetually rejected for financial loans; digital transformation tools, such as AI, have proven over the years to be inherently biased.  Of course, a computer cannot be decisive about gender or race, this problem of inequality from computer algorithms stems from the humans behind the screen. Despite the advancements made with Diversity and Inclusion efforts across all industries, Data & Analytics is still a predominantly white and male industry. Only 22 per cent of AI specialists are women, and an even lower number represent the BAME communities. Within Google, the world’s largest technology organisation, only 2.5 per cent of its employees are black, and a similar story can be seen at Facebook and Microsoft, where only 4 per cent of employees are black.  So, where our systems are being run by a group of people who are not representative of our diverse society, it should come as no surprise that our machines and algorithms are not representative either.  For businesses looking to implement AI and machine learning into their digital transformation moving forward, it is important you do so in a way that is truly reflective of a fair society. This can be achieved by encouraging a more diverse hiring process when looking for developers of AI systems, implementing fairness tests and always keeping your end user in mind, considering how the workings of your system may affect them.  Transparency Capturing Data is crucial for businesses when they are looking to implement or update digital transformation tools. Not only can this data show them the best ways to service customers’ needs and wants, but it can also show them where there are potential holes and issues in their current business models.  However, due to many mismanagements in past cases, such as Cambridge Analytica, customers have become increasingly worried about sharing their data with businesses in fear of personal data, such as credit card details or home addresses, being leaked. In 2018, Europe devised a new law known as the General Data Protection Regulation, or GDPR, to help minimise the risk of data breaches. Nevertheless, this still hasn’t stopped all businesses from collecting or sharing data illegally, which in turn, has damaged the trustworthiness of even the most law-abiding businesses who need to collect relevant consumer data.  Transparency is key to successful data collection for digital transformation. Your priority should be to always think about the end user and the impact poorly managed data may have on them. Explain methods for data collection clearly, ensure you can provide a clear end-to-end map of how their data is being used and always follow the law in order to keep your consumers, current and potential, safe from harm.  Make sure there is a process for accountability  Digital tools are usually brought in to replace a human being with qualifications and a wealth of experience. If this human being were to make a mistake in their line of work, then they would be held accountable and appropriate action would be taken. This process would then restore trust between business and consumer and things would carry on as usual.  But what happens if a machine makes an error, who is accountable?  Unfortunately, it has been the case that businesses choose to implement digital transformation tools in order to avoid corporate responsibility. This attitude will only cause, potentially lethal, harm to a business's reputation.  If you choose to implement digital tools, ensure you have a valid process for accountability which creates trust between yourself and your consumers and is representative of and fair to every group in society you’re potentially addressing.  Businesses must be aware of the potential ethical risks that come with badly managed digital transformation and the effects this may have on their brands reputation. Before implementing any technology, ensure you can, and will, do so in a transparent, trustworthy, fair, representative and law-abiding way.  If you’re in the world of Data & Analytics and looking to take a step up or find the next member of your team, we can help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.

RELATED Jobs

Salary

£70000 - £80000 per annum

Location

Birmingham, West Midlands

Description

Up to £80,000 + Competitive bonus & benefits

Salary

£30000 - £55000 per annum

Location

London

Description

This high growth, fast paced tech start up work with SME's to deliver messaging solutions across the business and to clients

Salary

US$170000 - US$180000 per annum

Location

New York

Description

Do you want to join an artificial intelligence company that has designed market-disrupting applications for the better good?

recently viewed jobs