A Q&A With Dyson’s Data Governance CDO

Femi Akintoye our consultant managing the role
Posting date: 4/17/2019 4:05 PM

Mridul Mathur is a skilled Senior Program Director with more than 15 years of experience working in businesses from Deutschebak to Dyson. He has a proven track record of successfully delivering large and complex cross-functional programs and building high performing teams from scratch. In last five years the main focus of his work has been in the area of Data Management to address the issues and challenges organisations have faced in the wake of various new regulations.

Data Management and Data Governance are hot topics at the moment. Do you feel that attitudes have changed towards the fields since the beginning of your career?

It’s been a very big shift. Going back to my involvement at Deutsche Bank around 2007, we were managing Data purely because we needed to create a Credit Risk position so that we could explain to the Bank of England and other regulators what we were doing. We didn’t really look beyond that. 

But now, if you look at the industry, we want to use Data to not only calculate our Risk position but to derive value out of that Data.  It's something that can give a company a competitive advantage  one of those things that can significantly change a business. I personally feel that the turning point, not just for Deutsche Bank but for everybody was the market crash that happened in 2008. 

A lot of the company did not have Data Management skills, or the ability to bring the Data together to understand exposures. Those who had exposure against Lehman, for example, could not recover any of the money they lost. That was the big turning point for all of them, when they actually lost hundreds of millions of dollars’ worth of revenue and loans overnight. They didn’t have the right Data, in the right place, and it cost them.

What major issues do you see successful Data Governance facing over the next 12 months?

I think we're still going through a phase of understanding and internalizing the issue. By that I mean that we understand that our Data is important and how it can help us not only manage Risk but create value. But, when it comes to actually applying it, we are hamstrung by two things: 

One is that we haven't quite grasped the ways in which we can internalise that Data. We understand the value but the actual application is not really out there currently. Secondly, I think that in some places, we have too much activity. I've been in places where there have been competing Data agendas and competing Data Governance ideas. When people are not taking their organisational view and just looking to get ahead, it’s hard to achieve any real success. 

If you were advising a company about to commence on a large Data Management transformation project, what advice would you give them?

This links to the previous point really, and it’s a bigger issue in large companies. You need to have a business approach to Data Governance, as well as the IP capabilities to deal with a project of that scale. And what you find sometimes is that multiple groups get together and they each have a different view of what good looks like. They end up not communicating throughout the organisation and properly aligning everybody’s roles and responsibilities. These different agendas then end up causing issues because everyone has a different idea of what they want. 

We need to be able to plan across the organization to get the right agenda and get the right properties in place. Then you can start the work, as opposed to each team just working where they think the biggest problem lies first. 

What would you say are the biggest threats to a successful Data Management program?

Obviously the above is one, but it leads to another which is really the lack of Senior Management sponsorship. If you don’t get the right level of sponsorship, then you don’t get the mandate to do what you need. This can cause huge delays and is definitely one of the biggest threats to your program being a success. 

In finance, you worked within a highly regulated industry. How have your approaches changed now that you’re in a highly innovative, tech-driven environment?

The approach is different. We do have challenges that others don't, but over and above, because we innovate and create things, there is an abundance of new information. Information protection and intellectual property protection is therefore at the top of the agenda. That drives the need for effective Data Governance and it really has to be at the forefront of the approach. 

Data breaches have caused widespread reputational damage to companies such as Facebook and Yahoo. Have you found that companies now view Data protection as central to their commercial performance?

Absolutely. People realize that they not only need Data to do their business, but they also need to protect that Data. These breaches have resulted in a greater importance being given to this function and every year I see it moving closer to the center of the organisation. There are very few large organisations left that haven’t recognized Data Protection as one of their formal functions.

A lot of companies are now looking to build out their Data Protection teams from the ground up, starting with lower levels of analysts, but also management as well. It’s becoming a much greater priority and these big breaches are one of the driving factors. 

What do you feel will be the most effective technical advancement within Data Management in 2019?

I think, from a technological perspective, we still have some way to go with digital rights management. There’s now one or two solutions that are supposed to be at Enterprise level, but they’re not enough and they’re still not joining the digital rights management side of things with the Big Data Loss Prevention side. 

So companies are having to rely on seeing this together with a combination of plugin software and various tools and technology. It’s sticking around the edges of the edges of a fix, but it’s not actually doing the job. I'd like to see these technologies develop because I think we're crying for some help in this area. 

What is the biggest risk to their Data that businesses should be aware of?

Not knowing where to get hold of Data. It is just mind boggling to me, that there has not been a single company that I have been a part of where we started a program and we knew where to get all our Data from. Obviously we knew where most of it was,  but we didn’t know where else it was and that what we were looking at was a comprehensive set of maps. It just continues to be the same at every business I have worked at.  

What role does data governance have to play in protecting a business’ intellectual property?

It plays a huge role. Firstly, a company needs to be very clear on their Data policies. This means regularly training teams on the importance of this, much like you would with health and safety. By clearly defining and educating people on the dos and don’ts of data handling you can better protect your intellectual property. I think getting the policy framework right and implementing it using digital rights management is crucial and good Data Governance relies on this. 

When hiring for your teams, which traits or skills do you look for in candidates?

There are two key parts; one is technical and the other non-technical. In my mind, it’s less about the technical because, ultimately, I just want someone who knows how to use ‘technology x’. They need to be able to make use of Data from a database, or be able to spot Data in an unstructured environment. But, for me, the most important skill is more of a characteristic: tenacity. I use the word tenacity because you have to put yourself out there. You have to ask people questions and you have to educate them. You can’t assume that people just understand Data you’re presenting them and you have to become their friends and learn to speak their language. It also really brings in the skill of being able to work with teams and across teams. Being a team player would absolutely be top of my list. 

Mridul spoke to Femi Akintoye, a Recruitment Consultant in our Data & Technology function. Take a look at our latest roles or get in touch with Femi.


Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

How Big Data Is Impacting Logistics

How Big Data is Impacting Logistics

As Big Data can reveal patterns, trends and associations relating to human behaviour and interactions, it’s no surprise that Data & Analytics are changing the way that the supply chain sector operates today.  From informing and predicting buying trends to streamlining order processing and logistics, technological innovations are impacting the industry, boosting efficiency and improving supply chain management.  Analysing behavioural patterns Using pattern recognition systems, Artificial Intelligence is able to analyse Big Data. During this process, Artificial Intelligence defines and identifies external influences which may affect the process of operations (such as customer purchasing choices) using Machine Learning algorithms. From the Data collected, Artificial Intelligence is able to determine information or characteristics which can inform us of repetitive behaviour or predict statistically probable actions.  Consequently, organisation and planning can be undertaken with ease to improve the efficiency of the supply chain. For example, ordering a calculated amount of stock in preparation for a busy season can be made using much more accurate predictions - contributing to less over-stocking and potentially more profit. As a result, analysing behavioural patterns facilitates better management and administration, with a knock-on effect for improving processes.  Streamlining operations  Using image recognition technology, Artificial Intelligence enables quicker processes that are ideally suited for warehouses and stock control applications. Additionally, transcribing voice to text applications mean stock can be identified and processed quickly to reach its destination, reducing the human resource time required and minimising human error.  Artificial intelligence has also changed the way we use our inventory systems. Using natural language interaction, enterprises have the capability to generate reports on sales, meaning businesses can quickly identify stock concerns and replenish accordingly. Intelligence can even communicate these reports, so Data reliably reaches the next person in the supply chain, expanding capabilities for efficient operations to a level that humans physically cannot attain. It’s no surprise that when it comes to warehousing and packaging operations Artificial Intelligence can revolutionise the efficiency of current systems. With image recognition now capable of detecting which brands and logos are visible on cardboard boxes of all sizes, monitoring shelf space is now possible on a real-time basis. In turn, Artificial Intelligence is able to offer short term insights that would have previously been restricted to broad annual time frames for consumers and management alike.  Forecasting  Many companies manually undertake forecasting predictions using excel spreadsheets that are then subject to communication and data from other departments. Using this method, there’s ample room for human error as forecasting cannot be uniform across all regions in national or global companies. This can create impactful mistakes which have the potential to make predictions increasingly inaccurate.  Using intelligent stock management systems, Machine Learning algorithms can predict when stock replenishment will be required in warehouse environments. When combined with trend prediction technology, warehouses will effectively be capable enough to almost run themselves  negating the risk of human error and wasted time. Automating the forecasting process decreases cycle time, while providing early warning signals for unexpected issues, leaving businesses better prepared for most eventualities that may not have been spotted by the human eye.  Big Data is continuing to transform the world of logistics, and utilising it in the best way possible is essential to meeting customer demands and exercising agile supply chain management.  If you’re interested in utilising Artificial Intelligence and Machine Learning to help improve processes, Harnham may be able to help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.  Author Bio: Alex Jones is a content creator for Kendon Packaging. Now one of Britain's leading packaging companies, Kendon Packaging has been supporting businesses nationwide since the 1930s.

Where Tech Meets Tradition

Where Tech Meets Tradition

If you’re lamenting the decline of handmade traditional products, cast your cares aside. There’s a new Sheriff in town and its name is, Tech. Just a generation ago, children would leave the farm or the family business, go to school, and then move on to make their place in the world doing their own thing. Away from family.  Today, the landscape has changed and those who have left are coming home. But this time, they’re bringing technology with them to help make things more efficient and more productive. Is Tech-Assisted Still Handmade? In a word, yes. Artists still make things “from scratch”, except now technologies allow them to not only see their vision in real-time, but their customers, too. Have you ever wondered what the image in your head might look like on paper or in metal? What about the design of prosthetic arms and healthcare devices by 3D printers? You’re still designing, creating.  But just like any new technology, there’s still a learning curve. Even for cutting-edge craftspeople who find that sometimes, the line between craftsmanship and high-tech creativity may be a bit of a blur. Not to mention the expense for either the equipment required or being able to offer art using traditional tools at technology-assisted prices. Somewhere between the two, there is a trade-off. It’s up to the individual to determine where and what that trade-off is. Life in the Creative Economy One of Banksy’s paintings shredded itself upon purchase at an auction recently. AI is making music and writing books. Augmented Reality, Virtual Reality, and Blockchain all have their place in the creative economy from immersive entertainment to efficient manufacturing processes. Each of these touches the way we live now. In a joint study between McKinsey and the World Economic Forum, 'Creative Disruption: The impact of emerging technologies on the creative economy', the organisations broke down the various technologies used in the creative economy and how they’re driving change. For example: AI is being used to distill user preferences when it comes to curating movies and music. The Associated Press has used AI to free up reporters’ time and the Washington Post has created a tool to help it generate up to 70 articles a month, many stories of which they wouldn’t have otherwise dedicated staff.Machine Learning has begun to create original content. Virtual Reality and Augmented Reality have come together as a new medium to help move people to get up, get active, and go play whether it’s a stroll through a virtual art gallery or watching your children play at the playground.  Where else might immersive media play out? Content today could help tell humanitarian stories or offer work-place diversity training. But back to the artisan handicrafts.  Artistry with technology Whilst publishing firms may be looking to use AI to redefine the creative economy, they are not alone. Other artists utilising these technologies include:  SculptorsDigital artistsPaintersJewellery makersBourbon distillers America’s oldest distiller has gotten on the technology bandwagon and while there is no rushing good Bourbon, but you can manage the process more efficiently. They’ve even taken things a step further and have created an app for aficionados to follow along in the process. Talk about crafted and curated for individual tastes and transparency. It may seem almost self-explanatory to note how other artisans are using technology. But what about distilleries? What are they doing? They’re creating efficiency by: Adding IoT sensors for Data Analytics collection Adding RFID tags to their barrels Creating experimental ageing warehouses (AR, anyone?) to refine their craft. Don’t worry, though. These changes won’t affect the spirit itself. After all, according to Mr. Wheatley, Master Distiller, “There’s no way to cheat mother nature or father time.” Ultimately, the idea is to not only understand the history behind the process, but to make it more efficient and repeatable. A way to preserve the processes of the past while using the advances of the present with an eye to the future. If you’re interested in using Data & Analytics to drive creativity, we may have a role for you. Take a look at our latest opportunities or get in touch with one of our expect consultants to find out more. 

RELATED Jobs

Salary

€40000 - €45000 per annum

Location

Nice, Provence-Alpes-Côte d'Azur

Description

Vous voulez vous rapprocher du soleil et intégrer une super startup qui s'installe à Nice ? Alors n'attendez pas pour postuler !

Salary

£350 - £400 per day

Location

London

Description

A major online travel company are looking for a talented BI Developer to help optimise and develop their new SQL Server data warehouse solution.

Salary

£45000 - £60000 per annum + bonus

Location

Farnham, Surrey

Description

his is a great opportunity for a Senior Developer or Tech Lead to join a junior data warehousing team

Salary

600000kr - 750000kr per annum

Location

Stockholm

Description

Do you want to work as a Microsoft BI Consultant in one of Sweden's leading consultancy environments within digital solutions?

recently viewed jobs