Data. It’s what we do. But, before the data is read and analysed, before the engineers lay the foundation of infrastructure, it is the programmers who create the code – the building blocks upon which our tomorrow is built. And once a year, we celebrate the wizards behind the curtain.
In a nod to 8-bit systems, on the 256th day of the year, we celebrate Programmers’ Day. Innovators from around the world gather to share knowledge with leading experts from a variety of disciplines, such as privacy and trust, artificial intelligence, and discovery and identification. Together they will discuss the internet of tomorrow.
The Next Generation of Internet
At the
Next Generation Internet (NGI), users are empowered to make choices in the control and use of their data. Each field from artificial intelligent agents to distributed ledger technologies support highly secure, transparent, and resilient internet infrastructures.
A variety of businesses are able to decide how best to evaluate their data through the use of social models, high accessibility, and language transparency. Seamless interaction of an individual’s environment regardless of age or physical condition will drive the next generation of the internet. But, like all things which progress, practically at the speed of light, there is an element of ‘buyer beware’, or in this case, from ‘coder to user beware’.
Caveat Emptor or rather, Caveat Coder
The understanding, creation, and use of algorithms has revolutionised technology in ways we couldn’t possibly have imagined a few decades ago. Digital and Quantitative Analysts aim to, with enough data, be able to predict some action or outcome. However, as algorithms learn, there can be
severe consequences of unpredictable code.
We create technology to improve our quality of life and to make our tasks more efficient. Through our efforts, we’ve made great strides in medicine, transportation, the sciences, and communication. But, what happens when the algorithms on which the technology is run surpasses the human at the helm? What happens when it builds upon itself faster than we can teach it? Or predict the infinite variable outcomes? Predictive analytics can become useless, or worse dangerous.
Balance is Key
Electro-mechanical systems we could test and verify before implementation are a thing of the past, and the role of Machine Learning takes front and centre. Unfortunately, without the ability to test algorithms exhaustively, we must walk a tightrope of test and hope.
Faith in systems is a fine balance of Machine Learning and the idea that it is possible to update or rewrite a host of programs, essentially ‘teaching’ the machine how to correct itself. But, who is ultimately responsible? These, and other questions, may balance out in the long run, but until then, basic laws regarding intention or negligence will need to be rethought.
Searching for a solution
In every evolution there are growing pains. But, there are also solutions. In the world of tech, it’s important to put the health of society first and profit second, a fine balancing act in itself.
Though solutions remain elusive, there are precautions technology companies can employ. One such precaution is to make tech companies responsible for the actions of their products, whether it is lines of rogue code or keeping a close eye on avoiding the tangled mass of ‘spaghetti’ code which can endanger us or our environment.
Want to weigh in on the debate and learn how you can help shape the internet of tomorrow? If you’re interested in Big Data and Analytics, we may have a role for you.
Check out
our current vacancies. To learn more, contact our UK team at +44 20 8408 6070 or email us at
info@harnham.com.