Breaking Code: How Programmers and AI are Shaping the Internet of Tomorrow

Eoin Pierce our consultant managing the role
Posting date: 9/13/2018 9:10 AM
Data. It’s what we do. But, before the data is read and analysed, before the engineers lay the foundation of infrastructure, it is the programmers who create the code – the building blocks upon which our tomorrow is built. And once a year, we celebrate the wizards behind the curtain. 

In a nod to 8-bit systems, on the 256th day of the year, we celebrate Programmers’ Day. Innovators from around the world gather to share knowledge with leading experts from a variety of disciplines, such as privacy and trust, artificial intelligence, and discovery and identification. Together they will discuss the internet of tomorrow. 

The Next Generation of Internet


At the Next Generation Internet (NGI), users are empowered to make choices in the control and use of their data. Each field from artificial intelligent agents to distributed ledger technologies support highly secure, transparent, and resilient internet infrastructures.

A variety of businesses are able to decide how best to evaluate their data through the use of social models, high accessibility, and language transparency. Seamless interaction of an individual’s environment regardless of age or physical condition will drive the next generation of the internet. But, like all things which progress, practically at the speed of light, there is an element of ‘buyer beware’, or in this case, from ‘coder to user beware’.

Caveat Emptor or rather, Caveat Coder


The understanding, creation, and use of algorithms has revolutionised technology in ways we couldn’t possibly have imagined a few decades ago. Digital and Quantitative Analysts aim to, with enough data, be able to predict some action or outcome. However, as algorithms learn, there can be severe consequences of unpredictable code

We create technology to improve our quality of life and to make our tasks more efficient. Through our efforts, we’ve made great strides in medicine, transportation, the sciences, and communication. But, what happens when the algorithms on which the technology is run surpasses the human at the helm? What happens when it builds upon itself faster than we can teach it? Or predict the infinite variable outcomes? Predictive analytics can become useless, or worse dangerous. 

Balance is Key


Electro-mechanical systems we could test and verify before implementation are a thing of the past, and the role of Machine Learning takes front and centre. Unfortunately, without the ability to test algorithms exhaustively, we must walk a tightrope of test and hope.

Faith in systems is a fine balance of Machine Learning and the idea that it is possible to update or rewrite a host of programs, essentially ‘teaching’ the machine how to correct itself. But, who is ultimately responsible? These, and other questions, may balance out in the long run, but until then, basic laws regarding intention or negligence will need to be rethought.

Searching for a solution 


In every evolution there are growing pains. But, there are also solutions. In the world of tech, it’s important to put the health of society first and profit second, a fine balancing act in itself.

Though solutions remain elusive, there are precautions technology companies can employ. One such precaution is to make tech companies responsible for the actions of their products, whether it is lines of rogue code or keeping a close eye on avoiding the tangled mass of ‘spaghetti’ code which can endanger us or our environment.

Want to weigh in on the debate and learn how you can help shape the internet of tomorrow? If you’re interested in Big Data and Analytics, we may have a role for you.

Check out our current vacancies. To learn more, contact our UK team at +44 20 8408 6070 or email us at info@harnham.com.

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

How Can Your Career In Big Data Help You To Accelerate Change?

Data & Analytics is fast becoming a core business function across a range of different industries. 2.5 quintillion bytes of data are produced by humans every day, and it has been predicted that 463 exabytes of data will be generated each day by humans as of 2025. That’s quite a lot of data for organisations to break down. Within Gartner’s top 10 Data & Analytics trends for 2021, there is a specific focus on using data to drive change. In fact, business leaders are beginning to understand the importance of using data and analytics to accelerate digital business initiatives. Instead of being a secondary focus — completed by a separate team — Data & Analytics is shifting to a core function. Yet, due to the complexities of data sets, business leaders could end up missing opportunities to benefit from the wealth of information they have at their fingertips. The opportunity to make such an impact across the discipline is increasingly appealing for Data Engineers and Architects. Here are a just a selection of the benefits that your role in accelerating organisational change could create. Noting the impact In a business world that has (particularly in recent times) experienced continued disruption, creating impact in your industry has never been more important. Leaders of organisations of a range of sizes are looking to data specialists to help them make that long-lasting impression. What is significant here is that organisations need to build-up and make use of their teams to better position them to gather, collate, present and share information – and it needs to be achieved seamlessly too. Business leaders, therefore, need to express the specific aim and objective they are using data for within the organisation and how it’s intended to relate to the broader overarching business plans. Building resilience Key learnings from the past year have taught senior leaders around the globe that being prepared for any potential future disruption is a critical part of an organisation’s strategic plans. Data Engineers play a core role here. Using data to build resilience, instead of just reducing resistance or limiting the challenges it presents, will ensure organisations are well-placed to move into a post-pandemic world that makes use of the abundance of data available to them. Big Data and pulling apart and understanding these large scale and complex data sets will offer a new angle with which to inform resilience-building processes.  Alignment matters An organisation’s ability to collect, organise, analyse and react to data will be the thing that sets them apart from their competitors, in what we expect to become an increasingly competitive market. Business leaders must ensure that their teams are part of the data-driven culture and mindset that an organisation adopts. As this data is used to inform how an organisation interacts with its consumers, operates its processes or reaches new markets, it is incredibly important to ensure that your Data Engineers (and citizen developers) are equipped and aligned with the organisation’s visions. Change is a continuous process, particularly for the business community. Yet, there are some changes that are unpredictable, disruptive and mean that many pre-prepared plans may face a quick exit from discussions. Data professionals have an opportunity to drive the need for change, brought about by the impacts of the pandemic, in a positive and forward-thinking way. In understanding impact, resilience and alignment, this can be truly achieved. Data is an incredibly important tool, so using this in the right way is absolutely critical. If you’re in the world of Data & Analytics and looking to take a step up or find the next member of your team, we can help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.

Using Data Ethically To Guide Digital Transformation

Over the past few years, the uptick in the number of companies putting more budget behind digital transformation has been significant. However, since the start of 2020 and the outbreak of the coronavirus pandemic, this number has accelerated on an unprecedented scale. Companies have been forced to re-evaluate  their systems and services to make them more efficient, effective and financially viable in order to stay competitive in this time of crisis. These changes help to support internal operational agility and learn about customers' needs and wants to create a much more personalised customer experience.  However, despite the vast amount of good these systems can do for companies' offerings, a lot of them, such as AI and machine learning, are inherently data driven. Therefore, these systems run a high risk of breaching ethical conducts, such as privacy and security leaks or serious issues with bias, if not created, developed and managed properly.  So, what can businesses do to ensure their digital transformation efforts are implemented in the most ethical way possible? Implement ways to reduce bias From Twitter opting to show a white person in a photo instead of a black person, soap dispensers not recognising black hands and women being perpetually rejected for financial loans; digital transformation tools, such as AI, have proven over the years to be inherently biased.  Of course, a computer cannot be decisive about gender or race, this problem of inequality from computer algorithms stems from the humans behind the screen. Despite the advancements made with Diversity and Inclusion efforts across all industries, Data & Analytics is still a predominantly white and male industry. Only 22 per cent of AI specialists are women, and an even lower number represent the BAME communities. Within Google, the world’s largest technology organisation, only 2.5 per cent of its employees are black, and a similar story can be seen at Facebook and Microsoft, where only 4 per cent of employees are black.  So, where our systems are being run by a group of people who are not representative of our diverse society, it should come as no surprise that our machines and algorithms are not representative either.  For businesses looking to implement AI and machine learning into their digital transformation moving forward, it is important you do so in a way that is truly reflective of a fair society. This can be achieved by encouraging a more diverse hiring process when looking for developers of AI systems, implementing fairness tests and always keeping your end user in mind, considering how the workings of your system may affect them.  Transparency Capturing Data is crucial for businesses when they are looking to implement or update digital transformation tools. Not only can this data show them the best ways to service customers’ needs and wants, but it can also show them where there are potential holes and issues in their current business models.  However, due to many mismanagements in past cases, such as Cambridge Analytica, customers have become increasingly worried about sharing their data with businesses in fear of personal data, such as credit card details or home addresses, being leaked. In 2018, Europe devised a new law known as the General Data Protection Regulation, or GDPR, to help minimise the risk of data breaches. Nevertheless, this still hasn’t stopped all businesses from collecting or sharing data illegally, which in turn, has damaged the trustworthiness of even the most law-abiding businesses who need to collect relevant consumer data.  Transparency is key to successful data collection for digital transformation. Your priority should be to always think about the end user and the impact poorly managed data may have on them. Explain methods for data collection clearly, ensure you can provide a clear end-to-end map of how their data is being used and always follow the law in order to keep your consumers, current and potential, safe from harm.  Make sure there is a process for accountability  Digital tools are usually brought in to replace a human being with qualifications and a wealth of experience. If this human being were to make a mistake in their line of work, then they would be held accountable and appropriate action would be taken. This process would then restore trust between business and consumer and things would carry on as usual.  But what happens if a machine makes an error, who is accountable?  Unfortunately, it has been the case that businesses choose to implement digital transformation tools in order to avoid corporate responsibility. This attitude will only cause, potentially lethal, harm to a business's reputation.  If you choose to implement digital tools, ensure you have a valid process for accountability which creates trust between yourself and your consumers and is representative of and fair to every group in society you’re potentially addressing.  Businesses must be aware of the potential ethical risks that come with badly managed digital transformation and the effects this may have on their brands reputation. Before implementing any technology, ensure you can, and will, do so in a transparent, trustworthy, fair, representative and law-abiding way.  If you’re in the world of Data & Analytics and looking to take a step up or find the next member of your team, we can help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.

RELATED Jobs

recently viewed jobs