Why it is hard to build a Big Data team

Ross Whatling our consultant managing the role
Posting date: 6/6/2017 3:19 PM

Increasingly, I speak to managers who are adopting big data tools and developing PoCs to prove how they can make use of them. Just last week I spoke to a data architect who mentioned that if he didn’t get exposure to big data tech sooner rather than later, his current RDBMS skills may become redundant within the next few years. While that is likely an exaggeration, it is certainly an interesting point. Companies that would have never previously had the capability to interpret ‘Big Data’ are now exploring a variety of NoSQL platforms. In particular, the massive performance benefits gained from Spark and real-time/streaming tools have opened up a whole new world beyond just MapReduce. I don’t claim to be a data engineer, but as a recruiter for this sector, what I do is spend all day, every day interacting with big data developers, architects and managers (as well as keeping a close eye on the latest Apache incubator projects). Due to this, I have seen some recurring themes that have become trends when companies look to create and build their big data teams that are coming to the fore.

Candidate demand

  • The demand for Big Data professionals is very much a present day issue as the data companies have grand plans for is waiting for the right data developer to use the best tech to extract valuable insights from it.
  • The best candidates receive massive interest, often gain multiple offers from a range of companies. Your business is now no longer just competing with large corporations such as Facebook, Twitter or Yahoo. Startups and SMEs are also vying for the best candidates.
  • Candidates are seeing pay rises twice that of the normal rate, as illustrated in our salary guide.

Candidate shortage

  • The number of candidates with hands-on, production level Big Data experience is incredibly limited. We go to great lengths to find the candidates who can add real value to companies.
  • The growth and exciting future for the big data industry has led to increased interest in big data jobs, particularly for those from RDBMS or software. engineering backgrounds. This leaves the industry in a difficult predicament: high demand + low supply = massive competition. There are countless examples of companies that have failed to recruit a Big Data team after a year of looking.

Competition to get ahead and stand out

  • Planning - Companies need to have a data road map detailing their future plans. Candidates want to clearly know what they are getting into and what to expect from a job.
  • Innovation - Why get stuck on batch processing? The most exciting positions that candidates love are in data innovations teams, playing with real-time/streaming tech and new languages.
  • Personal development, growth and training – with the data science market experiencing similar growth, many big data engineers are looking for a job that not only offers the chance to work with machine learning and similar fields; but training, mentoring towards clear career progression as standard.
  • Speed – the length of the interview process is often seen as a reflection of the amount of red tape developers have to go through to get a job. The longer and more convoluted the process, the more put off some people may be.
  • Complacency – don’t rest on your laurels, it’s unlikely that you’ll get 10s of CVs through when you are looking to fill a data role, so when you find a candidate you like, move swiftly to show your interest to them as quality candidates don’t come around often.

By implementing these small but effective improvements to your recruiting process and how you develop data talent will see you create a team that is a success in this ever more digital analytics landscape. Companies who don’t create and nurture strong, dynamic teams will fall by the wayside.

It’s Harnham’s job to help you achieve this goal. Get in touch with us to tell you how. T: (020) 8408 6070 E: info@harnham.com

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

Integrate Your Data And Business Strategies For Success

Why You Need To Integrate Your Data and Business Strategies

United we stand, together we fall. Not too put too fine a point to it, but how your business and data strategies align are integral to your business. Today’s world is about change, being able to pivot toward new strategies, and being open to trying new things. Consider this: the “mom-and-pop” shop is back and it is flourishing. Younger generations of farmers are returning to their family farms when they graduate and they’re bringing new knowledge with them. And the makerspace, freelance, and gig economies are thriving. These businesses are learning how to work with technology and align their Data Strategy with their Business strategy. Some legacy enterprises are taking notice. Others are missing the mark. Consumers may have changed how they want to shop and learn about services and products, but the services they want and expect haven’t changed that much which is why it’s more important than ever to “know your customer.”  3 Key Elements of Integrated Strategies While there are a number of things to take into consideration as you align your strategies, these three key elements can help get you started. 1. Understand the key elements of Business Strategy. 2. Apply innovation strategy to business objectives. 3. Determine key elements of your Data Strategy for use in a real-world scenario. Understand the key elements of business strategy  A business strategy encapsulates two main ideas; cost advantage versus competition. The cost advantage includes costs and other resources, identification and awareness of strengths, weaknesses, and competition. Competitive advantage happens when you’ve done your market research and can show what makes you different from any other provider with similar goods and services. This is the time you might perform a SWOT (strengths, weaknesses, opportunity, and threat) analysis of your business. It’s helpful to include your mission and vision statements, objectives, core values, risk tolerance, and understanding trends in your business. Apply Innovation Strategy to Business Objectives Ideas and innovation flow when you and your business understand your customers and are able to easily shift into new things. Think R&D into Bioinformatics, automated tasks into AI, or a platform such as streaming services to help sell services such as insurance. Laying the groundwork to apply innovation strategies to your business objectives follow these ideas: Identify your business objectives by asking questions.Assess the budget and personnel resources and develop a budget strategy.Test the market to determine what issues will or need to be solved and understand how this innovation will benefit your overall strategy. If you’re working on a Data initiative to integrate into your Business strategy, one of the key elements is to determine how those changes may affect your business. Determine Key Elements of Data Strategy for Use in Real-World Scenarios As you work on developing your Data Strategy, it’s important to consider all the elements required to ensure success. So, what do you need to take into consideration when working on this type of strategy? Here are some things to consider as you develop your framework. Determine your business needs and their current state.Determine what works and what can be improved upon if there is a technology improvement or process.Evaluate your Data from sales, profit, and evaluate your progress.}Develop an action plan. Many businesses don’t incorporate just one type of Data into their strategy. They consider the potential impact of technologies such as Machine Learning, Predictive and Data Analytics, and other Big Data Strategies to drive improvements when it comes to decision making. They understand these Data-driven insights can help them improve or solve their most critical problems. There is a caveat, however, and it is how you collect the information for real-world scenarios. Certain requirements are in place for a reason and they ensure only relevant Data is collected. This is done by formulating “predictive models” and necessary information to operate and determine whether your case will be something to be done over time or if it’s something brand new to consider when looking at real-time access. One Final Thought… Data-centric organisations have a distinct advantage over their competition. The information gained from collecting and analysing to understanding their customers can offer great insight as to what’s working and what isn’t. Integrating your Business Strategy with a Data Strategy can offer you a more well-rounded understanding of the customers you serve and can ultimately, help you to serve them better; now and in the future. Disruptive business models from this way of thinking can also foster growth and lead to innovative changes in your marketplace. If you want to be at the forefront of change we may have a role or candidate for you. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.

How Big Data Is Impacting Logistics

How Big Data is Impacting Logistics

As Big Data can reveal patterns, trends and associations relating to human behaviour and interactions, it’s no surprise that Data & Analytics are changing the way that the supply chain sector operates today.  From informing and predicting buying trends to streamlining order processing and logistics, technological innovations are impacting the industry, boosting efficiency and improving supply chain management.  Analysing behavioural patterns Using pattern recognition systems, Artificial Intelligence is able to analyse Big Data. During this process, Artificial Intelligence defines and identifies external influences which may affect the process of operations (such as customer purchasing choices) using Machine Learning algorithms. From the Data collected, Artificial Intelligence is able to determine information or characteristics which can inform us of repetitive behaviour or predict statistically probable actions.  Consequently, organisation and planning can be undertaken with ease to improve the efficiency of the supply chain. For example, ordering a calculated amount of stock in preparation for a busy season can be made using much more accurate predictions - contributing to less over-stocking and potentially more profit. As a result, analysing behavioural patterns facilitates better management and administration, with a knock-on effect for improving processes.  Streamlining operations  Using image recognition technology, Artificial Intelligence enables quicker processes that are ideally suited for warehouses and stock control applications. Additionally, transcribing voice to text applications mean stock can be identified and processed quickly to reach its destination, reducing the human resource time required and minimising human error.  Artificial intelligence has also changed the way we use our inventory systems. Using natural language interaction, enterprises have the capability to generate reports on sales, meaning businesses can quickly identify stock concerns and replenish accordingly. Intelligence can even communicate these reports, so Data reliably reaches the next person in the supply chain, expanding capabilities for efficient operations to a level that humans physically cannot attain. It’s no surprise that when it comes to warehousing and packaging operations Artificial Intelligence can revolutionise the efficiency of current systems. With image recognition now capable of detecting which brands and logos are visible on cardboard boxes of all sizes, monitoring shelf space is now possible on a real-time basis. In turn, Artificial Intelligence is able to offer short term insights that would have previously been restricted to broad annual time frames for consumers and management alike.  Forecasting  Many companies manually undertake forecasting predictions using excel spreadsheets that are then subject to communication and data from other departments. Using this method, there’s ample room for human error as forecasting cannot be uniform across all regions in national or global companies. This can create impactful mistakes which have the potential to make predictions increasingly inaccurate.  Using intelligent stock management systems, Machine Learning algorithms can predict when stock replenishment will be required in warehouse environments. When combined with trend prediction technology, warehouses will effectively be capable enough to almost run themselves  negating the risk of human error and wasted time. Automating the forecasting process decreases cycle time, while providing early warning signals for unexpected issues, leaving businesses better prepared for most eventualities that may not have been spotted by the human eye.  Big Data is continuing to transform the world of logistics, and utilising it in the best way possible is essential to meeting customer demands and exercising agile supply chain management.  If you’re interested in utilising Artificial Intelligence and Machine Learning to help improve processes, Harnham may be able to help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.  Author Bio: Alex Jones is a content creator for Kendon Packaging. Now one of Britain's leading packaging companies, Kendon Packaging has been supporting businesses nationwide since the 1930s.



€50000 - €60000 per annum + Flexibility and remote work.




Experienced Senior Data Engineer is required in Madrid to become involved in one of the most complex projects they have ever faced.


€60867 - €66400 per annum + Health Insurance package, Ongoing training




You won't find another company culture as cool as this one. Perfect place to sharpen your skills and grow while having fun.


£40000 - £45000 per annum




I'm currently hiring for a data engineer to join a data team who are using next generation data science work to take the art market by storm.

recently viewed jobs