The surprising history and bright future of data science

Nick Mandella our consultant managing the role
Posting date: 1/21/2015 9:14 AM

Data science is a young discipline, a multidisciplinary field requiring knowledge in sophisticated statistical modeling and software engineering. A strong grasp of information design doesn’t hurt, either. As a result, skilled practitioners are in high demand as increasingly data-driven enterprises and organizations in need of a unique skillset capable of reaping insights from big data. Meanwhile, there remains some confusion and debate as to what makes a data scientist.

The future of the discipline is bright, but it’s useful to look to its past to understand what it is and where it may be going. Data science arose from the convergence of two more mature disciplines. In a new post at Forbes, Gil Press presents a short history of how the discipline came to be, tracing its evolution back to a 1962 paper by mathematician John W. Tukey, “The Future of Data Analysis“. In Peter Naur’s 1974 book Concise Survey of Computer Methods, the computer scientist offered an early definition of data science, as “The science of dealing with data, once they have been established, while the relation of the data to what they represent is delegated to other fields and sciences.”

Beginning in the mid-’90s, the discussion leapt out of academic circles and turned towards potential business applications, with the advent of data mining technologies and their potential application in marketing and business intelligence. These developments also prompted the now-familiar challenge of storing and working with millions of rows of data. In 1999, Jacob Zahavi articulated this emerging issue, stating, “Scalability is a huge issue in data mining. Another technical challenge is developing models that can do a better job analyzing data, detecting non-linear relationships and interaction between elements… Special data mining tools may have to be developed to address web-site decisions.”

Data science came into its own during the last decade. As the strands of mathematics and computer science continued to intertwine in academia, new technologies were developed to mine, store, and analyze these massive data sets, while consumer internet giants such as Google demonstrated the business value of a data-driven approach to operations and innovation. A 2009 prediction by Google’s Chief Economist Hal Varian was particularly spot-on, with Varian telling McKinsey Quarterly, “I keep saying the sexy job in the next ten years will be statisticians…the ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that’s going to be a hugely important skill in the next decades.”

Four years later, this statement seems like a forgone conclusion, as big data has reached buzzword status in the media, and become fundamental to the operations of enterprise, academic, and government organizations. Awareness of the value of data science has leapt out of academia and the business world and into mass culture, largely thanks to the accuracy of Nate Silver’s projections during the 2012 elections and his bestselling book The Signal and the Noise. The discipline’s prominence and impact is set to increase considerably in the next decade, with the advent of the Internet of Things, the industrial internet, and the democratization of its tools and techniques, which will transform fields from healthcare to agriculture, journalism to civic life.

To learn more about the history of data science and its rise to prominence, check out Gil Press’s Short History of Data Science at Forbes.

Click here for the article on the web.

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

It Takes Two: Data Architect Meets Data Engineer

Information. Data. The lifeblood of business. Information and data are used interchangeably, gathered, collected, and analysed to create actionable insights for informed business decisions. So, what does that mean exactly? And to that end, how do we know what information or data we need to make those decisions? Enter the Data Architect. The Role of a Data Architect Just like you might hire an architect to sketch out your dreamhouse, the Data Architect is a Data Visionary. They see the full picture and can craft the design and framework creating the blueprint for the Data Engineer, who will ultimately build the digital framework. Data Architects are the puzzle solvers who can take a jumble of puzzle pieces, in this case massive amounts of data, and put everything in order. It’s their job to figure out what’s important and what isn’t based on an organisation's business objectives. Skills for a Data Architect might include: Computer Science degree, or some variation thereof.Plenty of experience working with systems and application development.Extensive knowledge and able to deep dive into Information ManagementIf you’re just starting your Data Architect path, be prepared for years of building your experience in data design, data storage, and Data Management. The Role of a Data Engineer The Data Engineer builds the vision and brings it to life. But they don’t work in a vacuum and are integral to the Data Team working nearly in tandem with the Data Architect. These engineers are building the infrastructure – the pipelines and data lakes. Once exclusive to the software-engineering field, the data engineer’s role has evolved exponentially as data-focused software became an industry standard. Important skills for a Data Engineer might include. Strong developer skills.Understand a host of technologies such as Python, R, Hadoop, and moreCraft projects to show what you can do, not just talk about what you can do – your education isn’t much of a factor when it comes to data engineering. On the job training does it best.Social and communication skills are critical as you map initial designs, and a love of learning keeps everything humming along, even as technology libraries shift, and you have to learn something new. The Major Differences between the Data Architect and Data Engineer RolesAs intertwined as these two roles might seem, there are some crucial differences. Data Architect Crafts concept and visualises frameworkLeads the Data Science teams Data Engineer Builds and maintains the frameworkProvides supporting framework With a focus on Database Management technologies, it can seem as though Data Architect and Data Engineer are interchangeable. And at one time, Data Architects did also take on the Data Engineering role. But the knowledge each has is used differently.  Whether you’re looking to enter the field of Data Engineering, want to move up or over with your years of experience to Data Architect, or are just starting out. Harnham may have a role for you. Check out our current opportunities or get in touch with one of our expert consultants to learn more.  

Trade Analysts Keep Money Flowing on the Field

What if you could manage risk and build a winning team the way Billy Bean does in Moneyball? If you’ve never seen the movie, it’s essentially this. You don’t need the best to win, the players who will cost you the most money or who are the most popular. You need players whose sole skill is to get on base. When it comes to the world of finance, how might you manage risk and find ways to get on base so to speak?  You may want to consider a Trade Analyst. Conversely, if you’re a data professional who’s got a nose for numbers, predictions, and the aptitude to get on base yourself, you may want to consider this as your next role. Not unlike so many Data Analyst jobs, you’re using Data to determine risk as well as deep dive into SWOT (strengths, weakness, obstacles, and threats) for your business. You’ll be managing statistics and pinpointing the best times of the day for optimal trading.  A Key Player in the World of Trade Much like a stockbroker begins when the markets open, so too, does a Trade Analyst. Your mission, should you choose to accept it, is to run point between the stockholders and those for whom they’re buying and selling.  Looking for puzzle solvers with an eye for detail and investigation, this role offers work with people from around the world. And as we continue, or as this year comes to a close, begin to cement our remote working opportunities, the world opens a host of opportunities for this role and many like it. What You Need to Know Buzz words abound in the data space and the classification for Trade Analyst can also be Financial Services Agent. Perhaps FSA is better as it gives a much more concise idea of what the job entails. However, Trader Analyst likens to a version of a Stock Broker who can drill down to the sharpest point what works, what will sell, what won’t, and how to fix what won’t work to what will.  While education is important for this role, the soft skills so in demand will be required here, too. Can you be the calm in the chaos? Does making the sale motivate you? Can you think on your feet? If you answered yes to any of these questions, here are a few education and skills components you’ll need to know. Degree in international business is a good place to start as is a degree in finance, economics, or logisticsAdd in a second language for good measureStrong research skills.Understanding financial trends within and across geographic regionsUnderstanding supply and demandHighly communicative with staff, executives, stakeholders, and the public. Not unlike a language professional who roles easily from a foreign language to English and back again, a Trade Analyst must be able to translate numbers and predictions into the language of persuasive bargaining. Market analysis conducted through such platforms as polls and surveys. This role offers job security for the professional who comes alive in a fast-paced environment within the world of business. Your wallet and bank account may thank you, too.  Going to the Show In baseball, going to the show implies you’re in the major leagues. That you’ll perform on the field of a major league team. You’re officially ‘on stage’. And so, it is with your role, even entry-level, of a Trade Analyst. From the moment you’re in the office and the phone rings to the final closing bell of the exchange, you’re on the field, and playing with the heavy hitters. You’ll identify risk, engage with customers, pay attention to the score, er deliverables and expectations, all the while staying in compliance with regulations.  If you’re looking for a role in Data & Analytics or are interested in finance or international trade analysis, we may have a role for you. Take a look at our latest opportunities or get in touch with one of our expert consultants to learn more.  

RELATED Jobs

Salary

US$135000 - US$150000 per annum

Location

New York

Description

If you're looking to assist fortune 500 companies to build their online brand, this role could be the next step in your career!

Salary

US$130000 - US$160000 per annum

Location

New York

Description

If you consider yourself an expert in modeling and predicting customer behavior, this could be the next step in your career!

Salary

US$100000 - US$120000 per annum

Location

Pittsburgh, Pennsylvania

Description

An exciting start-up is developing autonomous drones for inventory management.

recently viewed jobs