Building a data democracy

Sam Jones our consultant managing the role
Author: Sam Jones
Posting date: 2/7/2013 10:50 AM

A data democracy built to last needs tools that empower everyone to work with data rather than relying on apps and data scientists. Tableau helped ignite the data revolution, and its IPO could help it keep going.

The democratization of data is a real phenomenon, but building a sustainable data democracy means truly giving power to the people. The alternative is just a shift of power from traditional data analysts within IT departments to a new generation of data scientists and app developers. And this seems a lot more like a dictatorship than a democracy — a benevolent dictatorship, but a dictatorship nonetheless.

These individuals and companies aren’t entirely bad, of course, and they’re actually necessary. Apps that help predict what we want to read, where we’ll want to go next or what songs we’ll like are certainly cool and even beneficial in their ability to automate and optimize certain aspects of our lives and jobs. In the corporate world, there will always be data experts who are smarter and trained in advanced techniques and who should be called upon to answer the toughest questions or tackle the thorniest problems.

Last week, for example, Salesforce.com introduced a new feature of its Chatter intra-company social network that categorizes a variety of data sources so employees can easily find the people, documents and other information relevant to topics they’re interested in. As with similarly devised services — LinkedIn’s People You May Know, the gravitational search movement, or any type of service using an interest graph — the new feature’s beauty and utility lie in its abstraction of the underlying semantic algorithms and data processing.

The problem, however, comes when we’re forced to rely on these people, features and applications to decide how data can affect our lives or jobs, or what questions we can answer using the troves of data now available to us. In a true data democracy, citizens must be empowered to make use of their own data as they see fit and they must only have to rely apps and experts by choice or when the task really requires an expert hand. At any rate, citizens must be informed enough to have a meaningful voice in bigger decisions about data.

The democratic revolution is underway

The good news is that there’s a whole new breed of startups trying to empower the data citizenry, whatever their role. Companies such as 0xdata, Precog and BigML are trying to make data science more accessible to everyday business users. There are next-generation business intelligence startups such as SiSense, Platfora and ClearStory rethinking how business analytics are done in an area of HTML5 and big data. And then there are companies such as Statwing, Infogram and Datahero (which will be in beta mode soon, by the way) trying to bring data analysis to the unwashed non-data-savvy masses.

Combined with a growing number of publicly available data sets and data marketplaces, and more ways of collecting every possible kind of data —  personal fitness, web analytics, energy consumption, you name it — these self-service tools can provide an invaluable service. In January, I highlighted how a number of them can work by using my own dietary and activity data, as well as publicly available gun-ownership data and even web-page text. But as I explained then, they’re still not always easy for laypeople to use, much less perfect.

Can Tableau be data’s George Washington?

This is why I’m so excited about Tableau’s forthcoming IPO. There are few companies that helped spur the democratization of data over the past few years more than Tableau. It has become the face of the next-generation business intelligence software thanks to its ease of use and focus on appealing visualization, and its free public software has found avid users even among relative data novices like myself. Tableau’s success and vision no doubt inspired a number of the companies I’ve already referenced.

Assuming it begins its publicly traded life flush with capital, Tableau will not just be financially sound — it will also be in a position to help the burgeoning data democracy evolve into something that can last. More money means being able to develop more features that Tableau can use to bolster sales (and further empower business users with data analysis), which should mean the company can afford to also continually improve its free service and perhaps put premium versions in the hands of more types of more non-corporate professionals for free.

The bottom-up approach has already proven very effective in the worlds of cloud computing, software as a service and open-source software, and I have to assume it’s a win-win situation in analytics, too. Today’s free users will be tomorrow’s paying users once they get skilled enough to want to move onto bigger data sets and better features. But the base products have to be easy enough and useful enough to get started with, or companies will only have a lot of registrations and downloads but very few avid users.

And if Tableau steps ups its game around data democratization, I have to assume it will up the ante for the company’s fellow large analytics vendors and even startups. A race to empower the lower classes on the data ladder would certainly be in stark contrast to the historical strategy of building ever-bigger, ever-more-advanced products targeting only the already-powerful data elite. That’s the kind of revolution I think we all can get behind.


Click here for the article on the web.

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

Weekly News Digest: 22nd - 26th Feb 2021

This is Harnham’s weekly news digest, the place to come for a quick breakdown of the week’s top news stories from the world of Data & Analytics.  Search Engine Journal: 4 ways call tracking is changing (and why it’s a good thing) Call tracking is no longer about a customer seeing an ad, calling up the company, telling them how much they loved the ad and then deciding to purchase goods. This is a positive thing really because it wasn’t the most effective way for businesses to track how well adverts were doing anyway - who really remembers where they saw a billboard that took their interest, or what time of day an advert popped up on the TV? As call tracking technology becomes more advanced, call analytics have become much more accessible for all. Not only have they been able to transform how businesses of all shape and size advertise and track their success, but also how they market to potential audiences and track their sentiment.  This article from Search Engine Journal looks at the evolution of call tracking and call analytics from its most basic form, how it works now and what the future of this crucial set of analytics will look like in the future.  Read more on this here.  Towards Data Science: Data Science Year Zero Skills or qualifications in Data Science are becoming incredibly sought after by many employers, but the knowledge of how to break into the sector is still a little unclear for potential candidates. In this article by Towards Data Science, they break down the crucial elements of how to successfully enter the industry in four easy steps.  What the author, Bala Vishal, lacked when he started and how you can set off on a better footing.The most important skills and tools to have under your belt.Which skills should you home in on first.How to thrive in the workplace. This incredibly insightful piece should be a ‘must-read’ for any budding Data Scientist looking to break into Data in 2021 and beyond.  Read more here.  KD Nuggets: 10 Statistical Concepts You Should Know for Data Science Interviews This article is perfect for anyone in the Data Science industry. Whether you’re new to the game or looking to take the next step on the career ladder, make sure you brush up on these crucial statistical concepts you should know inside out before entering interview.  A few, in no order, include: Z tests vs T tests An invaluable piece of knowledge that will be used daily if you are involved in any statistical work.Sampling techniques Make sure you’ve got the main five solidified in your knowledge bank - Simple Random, Systematic, Convenience, Cluster, and Stratified sampling.Bayes Theorem/Conditional Probability One of the most popular machine learning algorithms, a must-know in this new era of technology.  Want to know about the other seven? Read more here. Forbes: 48 per cent of Sales Leaders Say Their CRM System Doesn’t Meet Their Needs. The Good News Is That This Is Fixable. This article by Gene Marks explores why teams aren’t happy with their current CRM systems, and how this can be remedied. New research from SugarCRM found: 52 per cent of sales leaders reported that their CRM platform is costing potential revenue opportunities.50 per cent of the companies said they cannot access customer data across marketing, sales and service systems.Nearly one-third complained that their customer data is incomplete, out of date, or inaccurate. While damning statistics, Marks then goes into how this worrying situation can be fixed for good. He says: “Like just about all problems in business, this problem comes down to two factors: time and money. The blunt fact is that most companies are not willing to spend the necessary time or money needed to enable their CRM systems to truly do what they’re designed to do. CRM systems are not just for sales teams. And they're not just for service teams. For a CRM system to be effective, a company must adapt it as its main, collaborative platform.” Read more on this here. We've loved seeing all the news from Data and Analytics in the past week, it’s a market full of exciting and dynamic opportunities. To learn more about our work in this space, get in touch with us at info@harnham.com.

How Are Data & Analytics Professionals Mapping COVID Trends With Data?

The coronavirus pandemic has impacted industries across the globe. There’s no ignoring that simple fact. This disruption (most notably) caused devastating effects in two strands: to our health and to business operations. As the virus spread, the health and wellbeing of people in society worsened, and businesses felt the strain of projects being placed on hold, and work slowing or completely grinding to a halt. As of the 24th February 2021, the disease has infected more than 112,237,188 people, with 2,487,349 reported deaths. For Data & Analytics professionals, it soon became evident that they could use their skills to help. Using the mass of data available, professionals and researchers turned to big data analytics tools to track and monitor the virus’s spread, along with a variety of trends. Here’s how: Genomics and sequencing Life science is a significant application within Data & Analytics and explores the study of all living things on earth. One particular section of this study looks at the concept of genomic sequencing.  Genomic sequencing is significant as it allows us looks at the entire genetic code of a virus – in this case, COVID-19. Most importantly, the technique means that researchers and analysts can identify dangerous mutations and track movements of specific variants. We know that the UK has the most advanced system for tracing covid variants too. Last year, Britain launched one of the world’s largest coronavirus sequencing projects, by investing £20 million in the Covid-19 Genomics UK consortium. In a group that included NHS researchers, public health agencies, academic partners and the Wellcome Sanger Institute, they set out to map the genetic code of as many strains of the coronavirus as possible. And the buy-in paid off. It took the US approximately 72 days to process and share each genetic sequence, compared with 23 days for UK researchers, according to figures compiled by the Broad Institute with data from Gisaid. Tech giants stepping in Ultimately, your organisation is more agile than you think it is. Regardless of the size of the business, or the industry in which it operates, the sector’s response in applying analysis and data to track the coronavirus was nothing short of miraculous. Google introduced a series of features such as popular times and live busyness, COVID-19 alerts in transit, and COVID checkpoints in driving navigation in order to keep their one billion (and growing) app users safe. They also introduced the COVID layer in Maps, a tool that shows critical information about COVID-19 cases in a given area, allowing their customers  to make informed decisions about where to go and what to do. Apple also released a mobility data trends tool from Apple Maps. This data was shared in order to provide insights to local governments and health authorities so that they could support mapping specific covid trends. These first-hand examples indicate the influence and power of using data to better our understanding of the virus. Before the coronavirus pandemic, professionals, businesses and industries alike worked in siloes. What we have witnessed since has been very much the opposite, as experts quickly came together to begin mapping out data requirements and supporting the world’s focus to improve the public’s health and get businesses back on their feet. Without Data & Analytics, none of this would be possible. If you're looking to take the next step in your career or build out a diverse Data & Analytics team, we may be able to help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more. 

RELATED Jobs

Salary

US$145000 - US$155000 per annum

Location

New York

Description

Do you have progressive experience working in eCommerce & digital environment and have a strong understanding of leveraging Bayesian techniques?

Salary

US$170000 - US$220000 per annum + Base Salary

Location

New York

Description

My client is looking for a seasoned Software Engineer in NYC looking to join their Investment Management business - read more below!

Salary

US$120000 - US$130000 per annum + Additional Benefits

Location

Cincinnati, Ohio

Description

My client in Ohio are looking for big data engineering experts looking to join a learning-based cutting edge environment to grow technically!

recently viewed jobs