KPMG LAUNCHES BIG DATA ANALYTICS INVESTMENT ARM TO GAIN RAPID MARKET ENTRY

Ewan Dunbar our consultant managing the role
Posting date: 11/11/2013 8:12 AM

KPMG, the global accountant and consultant has announced the formation of KPMG Capital, which will invest in big data and data analytics companies in Europe and beyond.

Headquarterd in London, KPMG Capital says it will primarily invest in big data and analytics businesses through strategic acquisitions and technology partnerships.

A growing fund

The initial value of the fund is believed to be worth $100 million (£66 million), and when required the KPMG Capital fund will be topped up with cash from its parent company.

Click here for the article on the web.

Related blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out the related posts below.

Marketing Analytics - Then, Now & In the Future: A Q&A with Sarah Nooravi

We recently spoke to Sarah Nooravi, an Analytics professional with a specialism in Marketing who was named one of LinkedIn’s Top Voices in Analytics.  Sarah found herself working in Analytics after being attracted to the culture, creativity and the opportunity to be challenged. Having spent the first four years of her career working within the Marketing space, she has seen a real transition in the way that Analytics and Data Science has informed Marketing decisioning.  “I started my career in a Marketing agency within the entertainment industry, at the time it was doing things that most of the entertainment industry hadn’t considered doing yet”.  At the start of her career she’d meet entertainment giants with advertising budgets of millions of dollars who were, at the time, making mostly gut decisions with how to approach campaigns. “It was common that I’d hear, ‘I think our audience is females over the age of 35 with a particular interest and we should just target them’” she expands.  However, agencies quickly recognised the need for something more Data-driven. Entertainment businesses were going too narrow and were misunderstanding their audiences. The next step was to embed into these businesses the insights from a greater variety of sources, including social media, and to introduce more testing. That translated into a better media buying strategy that could be continuously optimised. It was a big step forward in the utilisation of Data within this realm and its clear focus on ROI.  Suddenly, the market was changing, “There was a massive spike of agencies popping up and claiming to leverage Data Science and Machine Learning to provide better optimisations for entertainment companies, mobile gaming – you name it. There was a huge momentum shift from using these gut decisions to leveraging agencies that could prove that”.  What she saw next seemed only natural, with more agencies offering Data-driven optimisation, companies looked to develop this capability internally. Sarah elaborates; “Now I am seeing these companies starting to take ownership of their own media buying and bringing the Marketing and Data Science in-house”. This shift in-house has been propelled by the major players, companies like Facebook, Google and Nooravi’s own company, Snapchat, working directly with companies to help them optimise their campaigns. This shift has changed the landscape of Marketing Analytics, specifically within the advertising space. Sarah explains, “You no longer need an agency to optimise your, for example, Facebook campaigns, because Facebook will do it for you. They are minimising the number of people behind the campaigns. You give up a little of your company’s Data for a well optimised campaign and you don’t have to hire a media buyer. There is definitely a movement now to becoming more Data-driven. Companies are really leveraging A/B tests and also testing out different creatives”.  It is this change in strategy that is seemingly taking the Marketing Analytics challenge to the next level. With opportunities to pinpoint specific audiences, companies are using their Data to understand how to approach their content, take the opportunity to experiment, and to find out what it takes to resonate with their audience. Sarah has seen the potential of this first hand: “We are starting to see a lot of AR and VR. There are meaningful ways to engage with technology to connect with the world. Moving forward, content will have to become more engaging. People’s attention spans are becoming shorter and with each decision someone makes it is changing the direction of content in the future. There has been a massive shift from static images to video advertisement and, more recently, from video into interactive video like playable adverts. People want to engage with adverts in order to understand a company’s message”.  It is within this space that she sees a gap for the future of ROI positive advertising:  “The biggest issue that I find with the creative and the content is that the value add is missing. The resonance with the brand or company, their values and mission is what is missing. Analytics alone cannot fix that. You need to understand what the company stands for, people want to connect with brands because of what they stand for – whatever it is. Especially in a time like we are dealing with right now, a pandemic, advertising spending has gone down. However, maybe there is a way to properly message to people that would resonate. Not that you want them to buy your stuff but maybe right now is the perfect time to do outreach and to help people understand your brand”. The ability to understand and predict customer behaviour is evolving, but with that, so is the customer. Whereas at the moment, you can build out experiments, you can create models that will be able to, as Sarah explains, “in real-time decide whether a user’s behaviour is indicative of one that is going to churn” and then try and create offers to increase retention.   This is the challenge of the current analytics professional – our behaviours in a global pandemic have shifted consumers into a new world. Now working for Snap Inc, she sees the potential of this from a new perspective. Naturally, like most social media channels and communication technologies, they have seen an increase in usage over the last month.  “People are wanting to communicate more as we are forced to social distance. However, we are seeing different regions engaging a lot more heavily. For example, it's Ramadan right now, people want to share those moments with one another and at the moment the way that they are having to do that is changing”.  So, it will be a question for all those required to predict behaviours to determine how many of these new lines of communication, these new habits, will have evolved. Once people are out of quarantine, are they going to continue to utilise the apps, games, social channels in the same way that they are currently? It certainly is going to be something that many within the marketing analytics space will be trying to forecast.  If you’re looking to take your next step in Marketing Analytics, or are looking to build out your team, Harnham may be able to help.  Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more. 

WE HAVE TO TEACH SPECIALISATION, WE CAN’T EXPECT IT: A Q&A WITH VIN VASHISHTA

We recently spoke to Vin Vashishta, a consulting Data Scientist and Strategist who was named one of LinkedIn’s Top Voices in Data Science.  Having started off in the tech world 25 years ago and progressing from web design and hardware installation to Business Intelligence Analytics, Vin found for many years that enterprises were reluctant to adopt AI technologies and embrace the value of Data. In fact, it wasn’t until the beginning of the decade just passed that companies started to think about their Data more strategically and the world of Data Science was born, albeit hesitantly:  “When I first started, it was a lot of experimentation, everyone wanted a proof of concept,” he says. “A lot of work was creating models that could go from whiteboard to production and productise and show their value.” However, it wasn’t until halfway through the decade that he began to see businesses who had adopted Machine Learning move away from experimentation into incorporating it more deeply into their companies, relying more on analytical and optimisation models to make strategic business decisions.  “After that, in about 2017/2018 the maturity changed. It went from being a one off implementation to it being a comprehensive tool within an organisation where we have full lifecycles of model implementation and full models that were full views of the system. The key component of development was allowing users to access a small part of the system to do their job better without having to understand the whole thing. And that’s where we are now. We have this applied Deep Learning and we are seeing, especially this year, attempts to optimise that, make things go faster and make them more repeatable.” But, as we all know, with great power comes great responsibility: “There’s this whole depth we are getting into, the expectations are so much higher, people don’t just expect it to work they expect it to work the way they want it to and in a way they can adopt.” So, with so much expected and required of Data Scientists in 2020, building the right team is more important than ever. However, many businesses, Vin believes, are yet to get their hiring processes right: “A lot of the measures that we use to sort of evaluate employees are fictional – when you say years of experience, it has no correlation to employee outcomes or the quality of employee you get long term. It’s the same thing as college degree, there’s no correlation.” So when Vin is trying to build a highly specialised team, what does he do? “We have to teach specialisation, we can’t expect it. We can’t bring someone in and call them a Data Scientist and hope that they train up. You end up with teams that are exactly the same because they have hired the same people, people who reinforce the bias of what they do, and that is where true leadership needs to come in.” A specialised team made up of individuals who bring their own ideas to the table is more important than ever, particularly as businesses demand more from their Data teams. Gone are the days of one-size-fits-all models. Businesses now want something tailored to them: “Custom models are huge. The “import from…” Machine Learning development from three years ago adds value when it comes to wrangling and doing the Analysis, but when it comes to creating models companies are now expecting it to become a competitive advantage. Companies no longer want the same model that everyone else has, now it has to be differentiating.” These smart, customised models, he adds, will help businesses through the current pandemic. “The best models right now are adapting rather than reacting.”  However, he’s sceptical about the Data Science community becoming too preachy:  “When it comes to COVID-19 one message I want to send to the Machine Learning and Deep Learning community is ‘shut up’. We don’t have the Data! We have so many Data Scientists talking about something that’s very important to get right. If you get it wrong the consequences and the credibility we will lose as a field is enormous.” Indeed, discussions about the lack of quality Data on COVID-19 are widespread at the moment and raise concerns for Vin: “What the last two and a half months has revealed is the danger of bad Data, the danger of assumptions that are hidden in Data that hasn’t been looked over well or wasn’t gathered well and was fed into these models that now aren’t robust. Of course, no model can account for something this drastic, but they should still be performing far better than they are right now.” Despite these concerns, Vin believes any change in the world brings about opportunities for those in the Data and technology space. “What I’ve been trying to do ever since I joined the technology space is figure it out. It’s constantly evolving and it’s constantly changing. That’s really what has driven my journey. I’m always trying to figure out ‘what’s next’ over the next five years, ten years whatever it may be.” If you’re looking for your next Data Science, Machine Learning or Deep Learning role, or want to build out your own highly-specialised team, we may be able to help.  Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.   

RELATED Jobs

Salary

1000000kr - 1100000kr per annum + competitive benefits package

Location

Stockholm

Description

An awesome role for a Chief Risk And Analytics Officer to work in a fast paced growing, alternative lender in Stockholm/Helsinki!

Salary

£50000 - £70000 per annum + bonus + benefits

Location

City of London, London

Description

Fast growing tech firm looking to bring on board a successful Data Analyst to apply machine learning techniques to payments fraud detection and prevention.

Salary

£60000 - £70000 per annum + pension, health insurance, bonus

Location

London

Description

A growing forensic data team are looking for an experienced Data Analytics Manager to lead Transaction Monitoring projects.

recently viewed jobs