Senior Data Scientist

London
£60000 - £80000 per annum + Additional Benefits

Senior Data Scientist

London

Up to £80,000

The Company

Help one of the most respected brands in the UK diversify their data science function and create a whole new landscape for machine learning. You will work with fellow and like-minded Data Scientists and Data Engineers to define use cases and deliver data driven solutions across the whole organisation.

The Role

You will build complex machine learning algorithms working with various teams in the business. Your new ideas will be vital in shaping both your team and the company. You will:

  • Help build out the data science function using your expertise in Machine Learning techniques
  • Use Python design, build and implement models yourself in AWS and Spark
  • Work with the business to keep the Data Science stack up-to-date with the latest developments in the industry

Key skills and Requirements

  • Strong Machine Learning theory, statistics and implementation fundamentals
  • Hands on experience with Python and AWS
  • PHD or MSc in Computer Science, Maths, Natural Science or related discipline

HOW TO APPLY

Interested? Please register your interest by submitting your CV directly by applying to this advert.

Send similar jobs by email
VAC - 99911
London
£60000 - £80000 per annum + Additional Benefits
  1. Permanent
  2. Deep Learning and AI

Similar Jobs

Salary

£500 - £600 per day

Location

London

Description

Machine Learning Contractor £500 - £600.day (Outside IR35) London/Remote

Salary

€50000 - €60000 per annum

Location

Leiden, South Holland

Description

opwindende nieuwe kans

Salary

£65000 - £80000 per annum + Additional Benefits

Location

London

Description

Join a global telecoms company driving customer excellence through high impact data science techniques, across 20+ countries and over 400 million customers.

Salary

£55000 - £70000 per annum + Additional Benefits

Location

Bristol

Description

After recently partnering with Google, this FTSE 100 company is looking for an AI Architect to join and mould their company-wide transformation programme.

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Getting Ahead As A Specialist In Data Science

For professionals working in Data Science, the discipline is all about discovery, insights and innovation. Rapid advancements in the adoption of data and technologies, coupled with organisations feeling the strain of the mass of data they have, means that Data Scientists are in high demand. To stay ahead of the competition, companies must continuously look for unique ways to extract insights from the large volumes of data they acquire. This is where professionals from Data Science come in. Their skills lie in correlating data points, mapping out trends and identifying insights that support organisations to action change and/or enhance their growth. Now more than ever, due to the global pandemic, opportunities to move into a career in this space are vast. From Data Scientists, to Data Engineers and Heads of Analytics and Machine Learning, the possibilities for professionals in this discipline are limitless. Here are just a handful of the things you should know for a career in Data Science. Data Science is supporting the future According to the 2020 Emerging Jobs Report published by LinkedIn, the role of the Data Scientist continues to be an incredibly important one within data, analytics and technology. It also shows that, in our core markets, this position continues to be one of the top emerging roles: USA, it is thirdUK, it is seventhGermany, it is eighthFrance, it is tenth Data Science is a discipline that is growing. In the past year, we have seen these professionals demonstrate their ability to adapt into industries such as retail, banking and medicine, where we have seen such sharp change in consumer habits and a step up in global demand. They are all poised and ready to make use of Data Science functions and analytics. Take healthcare and medicine, for example. New collaborations, funding routes and systems for sharing data will shape research from now on. Data supports the way in which we interpret information and provides a means for us to make predictions, spot new trends and developments as well as better managing supply chains and organisational planning. Taking on a role as a Data Scientist or engineer will ultimately be a purpose-driven career, driving future innovations and making a range of business processes simpler and more effective. Professionals require an array of skills The way in which we have become connected today is ubiquitous. It is this level of connectivity that is having a direct impact on the way in which organisations operate (and how their consumers make use of services), due to the growing levels of data that are being collected and are then required to be interpreted and managed. Professionals working within the realms of Data Science need to keep this link in mind as their career and new project opportunities arise. Whilst it is crucial for these specialists to have unique skills such as Apache Spark, Data Science, Machine Learning and Python, they also need to have a clear understanding of statistics, hold business development skills and be clear communicators. Particularly of Data Scientists and engineers, it is imperative to really understand what the customer is looking for from the software, be able to handle multiple projects side-by-side and have excellent end-to-end experience across relevant frameworks. Professionals should take the time to bolster these skills, particularly for technical needs, by completing ongoing online courses, speaking to industry experts and staying updated with the latest iterations of programming and data languages. There are a range of career opportunities for skilled, savvy Data Science professionals with an interest in data and analytics on the table. The discipline is determined by technology and trends, making for a dynamic, rapidly developing industry that is growing at an unprecedented rate. Critically, as the industry continues to advance and demand for skilled professionals grows, there will be plenty of opportunity for you to make your mark. If you’re a Data Scientist looking to take a step up or are looking for the next member of your team, we can help. Take a look at our latest opportunities or get in touch with one of our expert consultants to find out more.

From Broken Data Pipelines to Broken Data Headlines

This week's guest post is written by Moray Barclay. Two things have caused the UK’s Test & Trace application to lose 16,000 Covid-19 test results, both of which are close to my heart. The first is the application’s data pipeline, which is broken. The second is a lack of curiosity. The former does not necessarily mean that a data application will fail. But when compounded by the latter it is certain. Data Pipelines All data applications have several parts, including an interesting part (algorithms, recently in the news), a boring part (data wrangling, never in the news), a creative part (visualisation, often a backdrop to the news), and an enabling part (engineering, usually misunderstood by the news).  Data engineering, in addition to the design and implementation of the IT infrastructure common to all software applications, includes the design and implementation of the data pipeline. As its name suggests, a data pipeline is the mechanism by which data is entered at one end of a data application and flows through the application via various algorithms to emerge in a very different form at the other end. A well architected data application has a single pipeline from start to finish. This does not mean that there should be no human interaction with the data as it travels down the pipeline but it should be limited to actions which can do no harm. Human actions which do no harm include: pressing buttons to start running algorithms or other blocks of code, reading and querying data, and exporting data to do manual exploratory or forensic analysis within a data governance framework. The data pipeline for Test & Trace will look something like this:    a patient manually fills out a web-form, which automatically updates a patient listfor each test, the laboratory adds the test result for that patientthe lab sends an Excel file to Public Health England with the ID’s of positive patientsPHE manually transpose the data in the Excel file to the NHS Test & Trace systemthe NHS T&T system pushes each positive patient contact details to NHS T&T agentsfor each positive patient, an NHS T&T contact centre agent phones them. This is a not a single pipeline because in the middle a human being needs to open up an editable file and transpose it into another file. The pipeline is therefore broken, splitting at the point at which the second Excel file is manually created. If you put yourself in the shoes of the person receiving one of these Excel files, you can probably identify several ways in which this manual manipulation of data could lead to harm. And it is not just the data which needs to be moved manually from one side of the broken pipeline to the other side, it is the associated data types, and CSV files can easily lose data type information. This matters. You may have experienced importing or exporting data with an application which changes 06/10/20 to 10/06/20. Patient identifiers should be of data type text, even if they consist only of numbers, for future-proofing. Real numbers represented in exponential format should, obviously, be of a numeric data type. And so on. One final point: the different versions of Excel (between the Pillar 2 laboratories and PHE) are a side-show, because otherwise this implies that had the versions been the same, then everything would be fine. This is wrong. The BBC have today reported that “To handle the problem, PHE is now breaking down the test result data into smaller batches to create a larger number of Excel templates. That should ensure none hit their cap.” This solves the specific Excel incompatibility problem (assuming the process of creating small batches is error-free) but has no bearing on the more fundamental problem of the broken data pipeline, which will stay until the manual Excel manipulation is replaced by a normal and not particularly complex automated process. Curiosity So where does curiosity fit in? The first thing that any Data Analyst does when they receive data is to look at it. This is partly a technical activity, but it is also a question of judgement and it requires an element of curiosity. Does this data look right? What is the range between the earliest and the latest dates? If I graph one measurement over time (in this case positive tests over time), does the line look right? If I graph two variables (such as Day Of Week versus positive tests) what does the scatter chart look like? Better still, if I apply regression analysis to the scatter chart what is the relationship between the two variables and within what bounds of confidence? How does that relate to the forecast? Why? This is not about skills. If I receive raw data in csv format I would open it in a python environment or an SQL database. But anyone given the freedom to use their curiosity can open a csv file in Notepad and see there are actually one million rows of data and not 65,000. Anyone given the freedom to use their curiosity can graph data in Excel to see whether it has strange blips. Anyone given the freedom to use their curiosity can drill down into anomalies. Had those receiving the data from the Pillar 2 laboratories been allowed to focus some of their curiosity at what they were receiving they would have spotted pretty quickly that the 16,000 patient results were missing. As it was, I suspect they were not given that freedom: I suspect they were told to transpose as much data as they could as quickly as possible, for what could possibly go wrong? Single Data Pipeline, Singular Curiosity: Pick At Least One To reiterate, the current problems with T&T would never have arisen with a single data pipeline which excluded any manual manipulation in Excel. But knowing that the data pipeline was broken and manual manipulation was by design part of the solution, the only way to minimise the risk was to encourage people engaged in that manual process to engage their curiosity about the efficacy of the data they were manipulating. In their prototype phases – for that is the status of the T&T application - data projects will sometimes go wrong. But they are much more likely to go wrong if the people involved, at all levels, do not have enough time or freedom to think, to engage their curiosity, and to ask themselves “is this definitely right?” You can view Moray's original article here.  Moray Barclay is an Experienced Data Analyst working in hands-on coding, Big Data analytics, cloud computing and consulting.

Recently Viewed jobs