Machine Learning Applied Engineer

San Francisco, California
US$240000 - US$260000 per annum

SENIOR APPLIED MACHINE LEARNING ENGINEER

$240,000-$260,000

SAN FRANCISCO, CA

Harnham is working with one of the largest companies in the world as they look to build out their renowned applied ML team. They are looking for leading scientists and engineers with experience in search and recommendation ML to join a team responsible for billions in revenue. Join an accomplished team of Machine Learning Engineers in their mission to continue innovating and shaping user experience on a massive scale. If you are interested in big data and how users engage with news, entertainment, and each other in real time, this is just the job for you.

THE COMPANY

Having your voice heard is an important part of contributing to any team. Luckily, this team has managed to maintain that start-up feel of all of the voices in the room being heard. You'll be enjoying the immense resources of a giant in the industry while also working with a team that values innovation and the contributions of its individuals. You'll help guiding the team toward its goals, without feeling encumbered by unchanging corporate overview.

THE ROLE

As a Senior Machine Learning Engineer, you will work on cutting-edge problems across the platform including:

  • Participating in the engineering lifecycle, from designing distribution systems in Scala to conducting code reviews in Java.
  • Mentoring a team for technical growth.
  • Applying Python-based machine learning and analysis techniques to a variety of complex problems dealing with user engagement.
  • Updating and supporting system services in Scala underpinning the platform as a whole.

SKILLS AND EXPERIENCE

The successful Senior Machine Learning Engineer will have the following skills and experience:

  • Advanced education in computer science, engineering, mathematics, or a related field.
  • Commercial experience in end to end model generation, especially with recommendation systems.
  • Strong experience working in machine learning and deep learning in a commercial environment
  • Proven experience working with advanced neural networks.
  • Tools: Tensorflow, Python, Java, Keras, Scala

THE BENEFITS

The successful SeniorMachine Learning Engineer will receive a salary of $240,000-$260,000/yr, dependent upon experience. Additional benefits include:

  • Health care, vision, and dental
  • 401k matching

HOW TO APPLY

Please register your interest by sending your CV to William Reichert via the Apply link on this page.

Send similar jobs by email
65790WR
San Francisco, California
US$240000 - US$260000 per annum
  1. Permanent
  2. Data science

Similar Jobs

Salary

£45000 - £60000 per annum + Competitive Benefits

Location

London

Description

Are you looking to join one of the UK's most renowned retailers as a Data Scientist, where you will be working to build algorithms for huge data sets?

Salary

£65000 - £70000 per annum

Location

City of London, London

Description

Do you want to work for an exciting new product at the forefront of AI backed heavily by investment?

Salary

€55000 - €65000 per annum + competitive benefits package

Location

Vilnius, Vilnius County

Description

A chance to take over a Data Science team and really make a different worldwide!

Salary

US$170000 - US$180000 per annum + BONUS + Unlimited PTO

Location

Boston, Massachusetts

Description

I'm working an exclusive partnership with a global leader in the E-commerce domain looking to scale their team out to a global level

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Coronavirus Update: What to expect from Harnham

As we learn more about COVID-19, we want to inform you of the proactive measures Harnham have taken to ensure the health and safety of our employees, while continuing to provide the best possible service to you.  The majority of our service offering will be unaffected by the current situation. All staff are continuing to work remotely and are on hand to support you, although you may experience slight delays in communication or find our phone lines busy. In these instances, we'd ask that you contact the member of the Harnham team that you were last in contact with directly. If you need to find their details, you can contact them via their online profile. Alternatively, you can also contact us via our social media channels and directly via email to our main inbox (UK/EU and USA).  Our Operations and Technology team have been working around the clock over the past weeks to ensure that we are able to continue running processes virtually. This has ensured that we are able to provide our clients with virtual meeting spaces, alongside the opportunity to conduct video interviews and calls without the need for face to face interaction.  We are working with a number of businesses who are continuing to hire, supporting them as they begin putting in place alternative processes. We will be in contact with all candidates who are currently in any process to update on the current situation or any change to process.  If you are currently looking for a new role, all our open vacancies have been updated on our website which you can view here.  In the coming weeks our Marketing Team will be running a number of events such as webinars and online Q&A sessions. I would advise that if you are not already following us on Social Media (Twitter and LinkedIn), that you do so to ensure you don’t miss these. We are also working to provide a range of comprehensive guides covering the challenges that you may face in the current climate.  I’d also like to add, if you have yet to take part in the Harnham 2020 Salary Survey please take a moment to do so, we will be extending this for a further two weeks due to unprecedented demand. All those that take part will be the first to receive a copy of the report.  In the meantime, we're running as close to business as normal as we possibly can, and are still here to support you with any hiring or job-seeking needs. We hope that you are able to look after yourself through this trying time and we look forward to working closely together again when normality returns.  

Data Science Interview Questions: What The Experts Say

Our friends at Data Science Dojo have compiled a list of 101 actual Data Science interview questions that have been asked between 2016-2019 at some of the largest recruiters in the Data Science industry – Amazon, Microsoft, Facebook, Google, Netflix, Expedia, etc.  Data Science is an interdisciplinary field and sits at the intersection of computer science, statistics/mathematics, and domain knowledge. To be able to perform well, one needs to have a good foundation in not one but multiple fields, and it reflects in the interview. They've divided the questions into six categories:  Machine LearningData AnalysisStatistics, Probability, and MathematicsProgrammingSQLExperiential/Behavioural Questions Once you've gone through all the questions, you should have a good understanding of how well you're prepared for your next Data Science interview. Machine Learning As one will expect, Data Science interviews focus heavily on questions that help the company test your concepts, applications, and experience on machine learning. Each question included in this category has been recently asked in one or more actual Data Science interviews at companies such as Amazon, Google, Microsoft, etc. These questions will give you a good sense of what sub-topics appear more often than others. You should also pay close attention to the way these questions are phrased in an interview.  Explain Logistic Regression and its assumptions.Explain Linear Regression and its assumptions.How do you split your data between training and validation?Describe Binary Classification.Explain the working of decision trees.What are different metrics to classify a dataset?What's the role of a cost function?What's the difference between convex and non-convex cost function?Why is it important to know bias-variance trade off while modeling?Why is regularisation used in machine learning models? What are the differences between L1 and L2 regularisation?What's the problem of exploding gradients in machine learning?Is it necessary to use activation functions in neural networks?In what aspects is a box plot different from a histogram?What is cross validation? Why is it used?Can you explain the concept of false positive and false negative?Explain how SVM works.While working at Facebook, you're asked to implement some new features. What type of experiment would you run to implement these features?What techniques can be used to evaluate a Machine Learning model?Why is overfitting a problem in machine learning models? What steps can you take to avoid it?Describe a way to detect anomalies in a given dataset.What are the Naive Bayes fundamentals?What is AUC - ROC Curve?What is K-means?How does the Gradient Boosting algorithm work?Explain advantages and drawbacks of Support Vector Machines (SVM).What is the difference between bagging and boosting?Before building any model, why do we need the feature selection/engineering step?How to deal with unbalanced binary classification?What is the ROC curve and the meaning of sensitivity, specificity, confusion matrix?Why is dimensionality reduction important?What are hyperparameters, how to tune them, how to test and know if they worked for the particular problem?How will you decide whether a customer will buy a product today or not given the income of the customer, location where the customer lives, profession, and gender? Define a machine learning algorithm for this.How will you inspect missing data and when are they important for your analysis?How will you design the heatmap for Uber drivers to provide recommendation on where to wait for passengers? How would you approach this?What are time series forecasting techniques?How does a logistic regression model know what the coefficients are?Explain Principle Component Analysis (PCA) and it's assumptions.Formulate Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) techniques.What are neural networks used for?40. Why is gradient checking important?Is random weight assignment better than assigning same weights to the units in the hidden layer?How to find the F1 score after a model is trained?How many topic modeling techniques do you know of? Explain them briefly.How does a neural network with one layer and one input and output compare to a logistic regression?Why Rectified Linear Unit/ReLU is a good activation function?When using the Gaussian mixture model, how do you know it's applicable?If a Product Manager says that they want to double the number of ads in Facebook's Newsfeed, how would you figure out if this is a good idea or not?What do you know about LSTM?Explain the difference between generative and discriminative algorithms.Can you explain what MapReduce is and how it works? If the model isn't perfect, how would you like to select the threshold so that the model outputs 1 or 0 for label?Are boosting algorithms better than decision trees? If yes, why?What do you think are the important factors in the algorithm Uber uses to assign rides to drivers?How does speech synthesis works? Data Analysis Machine Learning concepts are not the only area in which you'll be tested in the interview. Data pre-processing and data exploration are other areas where you can always expect a few questions. We're grouping all such questions under this category. Data Analysis is the process of evaluating data using analytical and statistical tools to discover useful insights. Once again, all these questions have been recently asked in one or more actual Data Science interviews at the companies listed above.   What are the core steps of the data analysis process?How do you detect if a new observation is an outlier?Facebook wants to analyse why the "likes per user and minutes spent on a platform are increasing, but total number of users are decreasing". How can they do that?If you have a chance to add something to Facebook then how would you measure its success?If you are working at Facebook and you want to detect bogus/fake accounts. How will you go about that?What are anomaly detection methods?How do you solve for multicollinearity?How to optimise marketing spend between various marketing channels?What metrics would you use to track whether Uber's strategy of using paid advertising to acquire customers works?What are the core steps for data preprocessing before applying machine learning algorithms?How do you inspect missing data?How does caching work and how do you use it in Data Science? Statistics, Probability and Mathematics As we've already mentioned, Data Science builds its foundation on statistics and probability concepts. Having a strong foundation in statistics and probability concepts is a requirement for Data Science, and these topics are always brought up in data science interviews. Here is a list of statistics and probability questions that have been asked in actual Data Science interviews. How would you select a representative sample of search queries from 5 million queries?Discuss how to randomly select a sample from a product user population.What is the importance of Markov Chains in Data Science?How do you prove that males are on average taller than females by knowing just gender or height.What is the difference between Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP)?What does P-Value mean?Define Central Limit Theorem (CLT) and it's application?There are six marbles in a bag, one is white. You reach in the bag 100 times. After drawing a marble, it is placed back in the bag. What is the probability of drawing the white marble at least once?Explain Euclidean distance.Define variance.How will you cut a circular cake into eight equal pieces?What is the law of large numbers?How do you weigh nine marbles three times on a balance scale to select the heaviest one?You call three random friends who live in Seattle and ask each independently if it's raining. Each of your friends has a 2/3 chance of telling you the truth and a 1/3 chance of lying. All three say "yes". What's the probability it's actually raining? Explain a probability distribution that is not normal and how to apply that?You have two dice. What is the probability of getting at least one four? Also find out the probability of getting at least one four if you have n dice.Draw the curve log(x+10) Programming When you appear for a data science interview your interviewers are not expecting you to come up with a highly efficient code that takes the lowest resources on computer hardware and executes it quickly. However, they do expect you to be able to use R, Python, or SQL programming languages so that you can access the data sources and at least build prototypes for solutions. You should expect a few programming/coding questions in your data science interviews. You interviewer might want you to write a short piece of code on a whiteboard to assess how comfortable you are with coding, as well as get a feel for how many lines of codes you typically write in a given week.  Here are some programming and coding questions that companies like Amazon, Google, and Microsoft have asked in their Data Science interviews.  Write a function to check whether a particular word is a palindrome or not.Write a program to generate Fibonacci sequence.Explain about string parsing in R languageWrite a sorting algorithm for a numerical dataset in Python.Coding test: moving average Input 10, 20, 30, 10, ... Output: 10, 15, 20, 17.5, ...Write a Python code to return the count of words in a stringHow do you find percentile? Write the code for itWhat is the difference between - (i) Stack and Queue and (ii) Linked list and Array? Structured Query Language (SQL) Real-world data is stored in databases and it ‘travels’ via queries. If there's one language a Data Science professional must know, it's SQL - or “Structured Query Language”. SQL is widely used across all job roles in Data Science and is often a ‘deal-breaker’. SQL questions are placed early on in the hiring process and used for screening. Here are some SQL questions that top companies have asked in their Data Science interviews.  How would you handle NULLs when querying a data set?How will you explain JOIN function in SQL in the simplest possible way?Select all customers who purchased at least two items on two separate days from Amazon.What is the difference between DDL, DML, and DCL?96. Why is Database Normalisation Important?What is the difference between clustered and non-clustered index? Situational/Behavioural Questions Capabilities don’t necessarily guarantee performance. It's for this reason employers ask you situational or behavioural questions in order to assess how you would perform in a given situation. In some cases, a situational or behavioural question would force you to reflect on how you behaved and performed in a past situation. A situational question can help interviewers in assessing your role in a project you might have included in your resume, can reveal whether or not you're a team player, or how you deal with pressure and failure. Situational questions are no less important than any of the technical questions, and it will always help to do some homework beforehand. Recall your experience and be prepared!  Here are some situational/behavioural questions that large tech companies typically ask:    What was the most challenging project you have worked on so far? Can you explain your learning outcomes?According to your judgement, does Data Science differ from Machine Learning?If you're faced with Selection Bias, how will you avoid it?How would you describe Data Science to a Business Executive? If you're looking for new Data Science role, you can find our latest opportunities here.  This article was written by Tooba Mukhtar and Rahim Rasool for Data Science Jojo. It has been republished with permission. You can view the original article, which includes answers to the above questions here. 

Recently Viewed jobs