HEAD OF DATA SCIENCE

San Francisco, California
US$140000 - US$160000 per year + BENEFITS

HEAD OF DATA SCIENCE

SAN FRANCISCO BAY AREA

$140,000-$160,000 + BENEFITS

THE COMPANY

This start up is improving the healthcare system by helping healthcare providers better understand their practice. Using your experience in data science, you will be leading a data science team in driving platform and product development. Domain knowledge in electronic health records (EHR) is necessary to the success of a candidate.

THE ROLE

Responsibilities will include:

  • Leading and growing the data science team and providing technical mentorship and leadership
  • Strategic data science planning and management
  • Interfacing cross functionally to solve business, product, and technical challenges

YOUR SKILLS AND EXPERIENCE

Your skills include:

  • Python- ability to productionize is a must
  • Industry or research experience in analyzing electronic medical records (EMR) and electronic health records (EHR)
  • Experience in AWS is a huge plus

THE BENEFITS

  • Salary range of $140,000 - $160,000
  • Health, vision, dental, and 401K
  • Generous PTO, great parental leave plan, and more!

HOW TO APPLY

Please register your interest by sending your CV to Alyssa Liew via the Apply link on this page.

Send similar jobs by email
66314
San Francisco, California
US$140000 - US$160000 per year + BENEFITS
  1. Permanent
  2. Health Informatics

Similar Jobs

Salary

£50000 - £70000 per annum

Location

London

Description

Join a well-established start-up, as one of the first Machine Learning experts!

Salary

US$130000 - US$150000 per year + BENEFITS

Location

San Francisco, California

Description

Are you ready to build and mentor a data science team? Use your expertise in Python and data science to a mission-drive health tech company.

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

3 Ways Machine Learning Is Benefiting Your Healthcare

With Data-led roles leading the list in the World Economic Forum’s ‘Jobs of the Future’ report, it is no surprise that Data Science continues to be the main driving force behind a number of technological advancements. From the Natural Language Processing (NLP) that powers your Google Assistant, to Computer Vision identifying scanning pictures for specific objects and the Deep Learning techniques exploring the capability of computers to become “human”, innovation is everywhere.  It’s unsurprising, then, that the world of healthcare is fascinated by the possibilities Data Science can offer,  possibilities which could not only make your and my life better, but also save several thousands of lives around the world. To just scrape the surface, here are three examples of how Machine Learning (ML) techniques are being used to benefit our healthcare.  COMPUTER VISION FOR IMAGING DIAGNOSTICS  Have you ever had a broken leg or arm and saw a x-ray scan of your fracture? Can you remember how the doctor described the kind of fracture to you and explained where exactly you can see it in the picture? The same thing that your doctor did a few years ago, can now be done by an algorithm that will identify the type of fracture, and provide insights into how you should treat it. And it’s not just fractures; Google's AI DeepMind can spot breast cancer as well as your radiologist. By feeding a Machine Learning model the mammograms of 76,000 British women, Google’s engineers taught the system to spot breast cancer in a screen scan. The result? A system as accurate as any radiologist.  We‘ve already reached the point where Machine Learning and AI can no longer just outsmart us at a board game, but can benefit our everyday lives, including in as sensitive use-cases as the healthcare industry. NLP AS YOUR PERSONAL HEALTH ASSISTANT  When we go to our GP, we go to see someone with a medical education and clinical understanding who can evaluate our health problems. We go there because we trust in the education of this person and their ability to give us the best information possible. However, thanks to the rise of the internet, we’ve turned to search engines and WebMD to self-diagnose online, often reading blogs and forums that will convince us we have cancer instead of a common cold.  Fortunately, technology has advanced to the point where it can assist with an on-the-spot (much more accurate) evaluation of your medical condition. By conversing with an AI, like the one from Babylon Health, we can gain insights into possible health problem, define the next steps we need to take and know whether or not we need to see a doctor in person.  There’s no need to wait for opening times or to sit bored in a waiting room. Easy access from your phone democratises the process and advice can be received by anyone, at any time.    DEEP LEARNING DRAWS CONCLUSIONS BETWEEN MEDICAL STUDIES Despite their extensive qualifications, even medical researchers can feel overwhelmed by the sheer amount of Insights and Data that are gathered around the world in hospitals, labs, and across various studies. No wonder it’s not uncommon for important Insights and Data to get forgotten in the mix. Once again, Machine Learning can help us out. Instead of getting lost in a sea of medical data, ML algorithms can dig deep and find the information medical researchers really need. By efficiently sifting a through vast amounts of medical data, combining certain datasets and providing insights, ML sources ways for treatments to be improved, medicines to be altered, and, as a result, can save lives. And this is only the beginning. As Machine Learning continues to improve we can expect huge advances in the following years, from robotic surgery to automated hospitals and beyond. If you’re an expert in Machine Learning, we may have a job for you. Take a look at our latest opportunities of get in touch with one of our expert consultants to find out more. 

The Harnham 2019 Data & Analytics Salary Guide Is Here

We are thrilled to announce the launch of our 2019 UK, US and European Salary Guides. With over 3,000 respondents globally, this year’s guides are our largest and most insightful yet.  Looking at your responses, it is overwhelmingly clear that the Data & Analytics industry is continuing to thrive. This has led to an incredibly active market with 77% of respondents in the UK and Europe, and 72% in the US, willing to leave their role for the right opportunity.  Salary expectations remain high, although we’re seeing that candidates often expect 2-10% more than they actually achieve when moving between roles.  Globally, we’ve also seen a change in the reasons people give for leaving a position, with a lack of career progression overtaking an uncompetitive salary as the main reason for seeking a change.   There also remains plenty of room for industry improvement when looking at gender parity; the UK market is only 25% female and this falls to 23% in the US and 21% across the rest of Europe.  In addition to our findings, the guides also include insights into a variety of markets and recommendations for both those hiring, and those seeking a new role.  You can download your copies of the UK, US and European guides here.

Recently Viewed jobs