Digital Fraud Analytics Manager
England / £40000 - £60000
INFO
£40000 - £60000
LOCATION
England
Permanent
DIGITAL FRAUD MANAGER
REMOTE
UP TO £60,000
Join a leading online bank to help lead their fraud analytics team!
THE ROLE
- Support the development of a cutting-edge fraud protection system at a leading online bank
- Using fraud trends to generate value for the business and customers
- Building, implementing, and testing fraud models and amending fraud rules using SQL and python
- Giving feedback to the teams to help drive improvements in the systems and models to improve efficiency
- Managing fraud and financial crime risk across many products
- Driving fraud authorization strategies using large data sets
- Managing and mentoring junior analysts
SKILLS REQUIRED
- Have a very strong financial services analytics background
- Strong skills in SAS, SQL, or Python
- Excellent communication skills
- A numeric degree
- A background in fraud analytics
BENEFITS
- Up to £60,000 + competitive benefits package
- Hybrid working

SIMILAR
JOB RESULTS

Is Product Analytics the new Digital Analytics? | Harnham Recruitment post
+
Following on from our exploration of what Digital Analytics is, and the exploration specifically of hiring Digital Insights Analysts in the North of England and Midlands, we wanted to take a look at Product Analytics, and how it differs from the standard Digital Analyst role.To help investigate the importance of Product Analytics in the current market, we have interviewed Nicky Tran, a Product Analyst at Virgin Media (Manchester).What Is A Product Analyst?In simple terms, a Product Analyst ‘’looks at the different products a company has, and then you are identifying which areas of the product can be improved or which areas can be optimised.” While Digital Analytics can inform the product lifecycle, the interesting aspect to this role is, that unlike a traditional Web Analyst role, it is more of a hybrid role. Nicky emphasised that it is ‘’an upcoming sector within the analytics community’’, providing an overlap between Digital Analytics, Customer Analytics and Data Science.The key skills and tools for this role are advanced SQL, Google Analytics, and AB testing. So how does this skillset differ from a traditional Web Analyst? Nicky suggests that while the core requirements are that of a Web Analyst, with a web role you would essentially just be using Google Analytics Data. However, as a Product Analyst, you would be using advanced SQL to access other data bases, and pull data from models, and therefore, “you are combining two sets of data to get a more insightful look”.Why Is Product Analytics Important, And Why Are They Now Becoming More Prominent On The Market?Similar to Digital Analytics roles, it is clear that with the impending digital transformation, companies are becoming increasingly data-led, especially with regards to their digital platforms (and products).As a result of the pandemic, the digital space is so much more important than ever before. Therefore, to stay competitive, and to really understand the products from the consumer perspective, companies have to provide the most personalised customer experiences to acquire and retain their consumers. As Nicky mentions, ‘It is definitely worth making an ‘inventory’ to see how to promote what you have – it is about personalising the customer journey’.What are employers looking for in a Product Analytics candidate?Product Analytics are great due to their hybridity. In the current market, where there are numerous jobs, and few candidates, a Product Analyst (technically strong in three areas) is a highly sought-after rarity.Businesses are becoming increasingly invested in Product Analytics and having a Product team that works alongside the Digital team can be beneficial; especially when companies need to stay competitive.What are Candidates looking for? Understanding the differences between a Digital Analyst, and a Product Analyst is key to understanding what a candidate is looking for. Nicky suggested that this Product Analyst role enabled her to be the ‘bridge’ between areas.So how does the future of a Product Analyst differ to that of the route of a Digital Analyst? For Nicky, this is one of the most important factors to being a Digital Analyst, as she has the option to go down the Data Science route in the future should she wish. The more technical skills she has as a Product Analyst means she is building up experience across different areas of Data & Analytics, giving her a slightly different career path, should she want to go down a more technical route.Why Choose A Product Analyst Role?“If you come from a technical background – maths, physics, computer science – and are interested in how the numbers are crunching, it is worth going into Product Analytics, as it needs a logical mathematics brain, to be able to convert it into a way which is useful to stakeholders.”From speaking to Nicky, it is clear that Product Analytics is an up-and-coming role that people don’t know enough about it. Therefore, if you are curious about Product Analytics, or any of the different roles the market has to offer at the moment, as an employer looking for help hiring, or a candidate actively or passively looking for work, Harnham can help. Take a look at our latest Product Analytics jobs, or get in touch for more information on how we can support your hiring needs.

As Incidents Of Cybercrime Increase, How Can A Fraud Analyst Give Your Business Peace Of Mind?
+
Whilst it’s true that cybercriminals are becoming more creative and sophisticated, as are analytical techniques and the experts that wield them. Fraud Analysts now have more techniques and reach than ever, and as incidents of cybercrime increase, this isn’t an area that businesses should be scrimping on.
According to PwC’s Global Economic Crime and Fraud Survey 2022, 46 per cent of organisations surveyed reported experiencing fraud or financial crime over the last 24 months and tech, media and telecommunications businesses appeared to have taken the brunt. Findings showed that nearly two-thirds of this group experienced some form of fraud, the highest incidence of any industry.
The ONS also recently released stats showing that fraud offences increased by 25 per cent in 2021 (to 4.5 million offences) compared with the year ending March 2020. Indeed, the proportion of these incidents that were cyber-related increased to 61 per cent up from 53 per cent.
The rise of cyber-fraud is a clear issue and for some businesses such as financial institutions, tackling this by using fraud teams made up of expert Fraud Analysts is the norm. But for others, it may not have been seen as a priority until recently. However, any business which has a growing number of online transactions will become a bigger target for fraudsters and would benefit from a team member able to help minimise the risk.
So, how can fraud analysts help?
Far from wanting to paint a bleak picture, while fraud techniques are evolving and improving, so are anti-fraud efforts. All risks associated with financial crime involve three kinds of countermeasures: identifying and authenticating the customer, monitoring and detecting transaction and behavioural anomalies, and responding to mitigate risks and issues. All of these are carried out by fraud experts, such as Fraud Analysts, armed with ever-evolving technologies and techniques. So, what exactly does a Fraud Analyst do?
Fraud Analysts will track and monitor transactions and activity, identify and trace any suspicious or high-risk transactions, determine if there is improper activity involved, and identify if there is any risk to the organisation or its customers. They are able to digest huge swathes of information and quickly and efficiently prioritise the data that’s important in order to tell a story of fraud or no fraud.
To cope with the speed and scale of online commerce, new technologies such as Machine learning (ML) models have come to the fore. These models have the ability to simulate thousands of scenarios and take over the mundane tasks of sifting through swathes of data in a tiny percentage of the time it would take a human. The systems used by Fraud Analysts will vary based on the industry, but a common example is rule-based expert systems (RBESSs). A very simple implementation of artificial intelligence (AI) RBESSs are used to detect fraud by calculating a risk score based on users’ behaviours, such as repeated log-in attempts or ‘too-quick-for-being-human’ operations. Based on the risk score, the rules deliver a final decision on each analysed transaction, therefore blocking it, accepting it, or putting it on hold for analyst’s revision. The rules can be easily updated over time, or new rules can be inserted following specific needs to address new threats.
This method has proved very effective in mitigating fraud risks and discovering well-known fraud patterns. That said, rule-based fraud detection solutions have demonstrated that they can’t always keep pace with the increasingly sophisticated techniques adopted by fraudsters, without regular updates and expert use.
Machines also cannot mimic human traits like intuition. People can detect if things aren’t right even if they have not seen them before. It’s an instinct not yet successfully trained into machines. Therefore, new trends are much better pursued by an analyst and then a machine can be trained to stop future occurrences. A well-implemented ML system will free up precious time for an analyst to perform these more productive tasks.
A non-stop process
So, your Fraud Analyst has now set up a new ML system to identify fraudulent activity and is also looking for new trends that fraudsters may be trying – now what? Fraud Analysts never sit still. Their job is not a one-time fix but one of constant evolution and refinement. Their role involves identifying weaknesses in systems and continually looking for opportunities for improvement, such as recommending anti-fraud processes to detect new patterns or new software tools to help with reporting. Their finger is always on the pulse of emerging developments and will ensure your company remains protected against current risks.
Not only is this aspect part of the job description, but it is also to some extent inherent to their nature. Fraud Analysts tend to be curious, have a strong attention to granular detail, as well as an inclination towards problem-solving. Leaving no stone unturned is part of their makeup. This analytical skillset will dig out any problems that are there – which will unfortunately then require you to fix them (sorry!) – but it is far better to be aware of any weaknesses now. The majority of companies only realise their shortcomings when it is already too late. Ultimately it is better to be safe than sorry.
A Fraud Analyst not only helps to protect businesses against creative cyber criminals but will also give owners reassurance as they look to grow and thrive unimpeded.
If you are looking for a complete recruitment solution across the breadth of Data & Analytics disciplines to build out a robust Data & Analytics function, get in touch with one of our expert consultants here.
Looking for a new role? Take a look at our latest Fraud Analyst jobs.

How Fraud Analytics Can Keep Your Money Safe
+
How Fraud Analytics Can Keep Your Money Safe
We’ve previously written about how data analytics can help save your business money, but what about protecting the funds and resources your company already has?
It is widely reported that cyberattacks are rising as are incidences of fraud. Indeed, a 2020 PwC study found that 47 per cent of businesses had at least one incidence of fraud in the past two years, with an average of six instances per company. The losses from these incidents for the 5,000+ businesses surveyed amounted to $42 billion – approximately $8.4 million per company.
As consumer costs rise and businesses find their budgets stretched more than ever, losing any funds through fraud has become all the more damaging. Because of this, leaders need to pull out every stop to prevent it. Here’s how fraud analytics can help.
What is Fraud Analytics?
Companies have been using anomaly detection and rules-based methods to combat fraud for decades. While these methods are effective, they have their limitations.
This is because rules-based tools only detect abnormalities based on explicit, pre-written rules, whereas advanced analytics uses a company’s existing data to spot patterns, learn trends, and eventually detect outliers on its own through the use of artificial intelligence, machine learning, and predictive analytics.
These advanced analytics tools can be used to automate and speed up some of the labour-intensive work, which reduces operational costs and leaves others free to concentrate on the arguably more powerful, preventative activity.
One sector that’s been heavily leveraging fraud analytics is finance. Traditionally, such organisations have relied heavily on manual, human intervention in the regulatory reporting process. However, with large swathes of data moving in and out of systems, the capabilities for humans to keep up are simply untenable.
How is Fraud Analytics Useful?
Financial data can be scrutinised in numerous ways to identify anomalies in patterns of consumer and/or employee behaviour that might indicate financial wrongdoing–both internal and external.
For example:
- Ledger entries can be scrutinised for potential fraud or errors, using data analytics to identify suspicious entries.
- Expenses in areas such as travel are often where unscrupulous employees could fudge numbers. This could be tackled by monitoring department spending over time to understand the average range for each division, and setting up an alert triggered if the department deviates from that range.
- Contractor payments are common areas for fraudulent behaviour. Vendors may submit the same invoice multiple times, either by accident or to follow up on unpaid bills. You may pay the same invoice twice if you don’t have a system for tracking and flagging duplicates.
Financial data analytics can also be applied to a range of companywide performance indicators, such as monitoring company goals and objectives, building dynamic profit and loss statements, or streamlining budgeting and forecasting.
By evaluating historical data alongside forward-looking financial statements, analytic techniques can help to form an evolving forecast, which gives finance teams a greater understanding of the current and future financial health of the business. And, unlike the static reports used for accounting, data analytics offers dynamic analysis, allowing the user to ‘ask’ the data questions.
Humans Versus Machines
Despite strides in technological development, human intervention remains paramount in data analytics practices. While analytics techniques offer a fool-proof way of identifying issues, humans are needed to provide vital context, investigate suspicious activity and give it business relevance.
There will always be a high number of anomalies from the data analytics process, but very few will transpire to be errors and even fewer fraudulent transactions. Data professionals with an understanding of the business can use their judgment and intuition to weed out irrelevant information, explain most anomalies that appear, and further investigate those that warrant extra attention.
Interested in using your skills to help businesses to remain secure against fraud? The world of fraud data analytics is a fast-paced industry full of opportunities across countless sectors – check out our roles today.

CAN’T FIND THE RIGHT OPPORTUNITY?
STILL LOOKING?
If you can’t see what you’re looking for right now, send us your CV anyway – we’re always getting fresh new roles through the door.