CONSULTANT TECHNIQUE – SAAS
Paris, Île-de-France / €57921 - €69505
INFO
€57921 - €69505
LOCATION
Paris, Île-de-France
Permanent
CONSULTANT TECHNIQUE - SAAS
PARIS (75)
50-60K€
Belle opportunité de Consultant Technique afin d'intégrer une entreprise innovante, de type SaaS, qui évolue dans le secteur du marketing digital. L'entreprise développe sa propre solution d'intelligence artificielle.
Vous jouerez un rôle clé dans la compréhension des problèmes que les équipes en interne pourraient rencontrer en leur fournissant des analyses et des recommandations.
LE POSTE
Vous serez amené.e à collaborer avec les différentes équipes métiers afin d'identifier les zones de friction des utilisateurs sur les différents sites et applications de la marque.
Ceci inclus :
- Mettre en place des audits et des analyses de performance
- Proposer un diagnostic sur les points défaillants ou à améliorer
- Veiller à la mise en place des solutions retenues
VOTRE PROFIL
- Bac +5 en Ecole de Commerce ou Ecole d'Ingénieur
- 3 ans expérience sur un rôle similaire
- Connaissances d'au moins un outil de Demand Side Platform (DSP)
- Expérience en gestion de campagnes Programmatic est un plus
- Maitrise de l'outil Excel
POUR POSTULER
Merci de me faire part de votre CV et je vous recontacterai au plus vite.

SIMILAR
JOB RESULTS

As Incidents Of Cybercrime Increase, How Can A Fraud Analyst Give Your Business Peace Of Mind?
+
Whilst it’s true that cybercriminals are becoming more creative and sophisticated, as are analytical techniques and the experts that wield them. Fraud Analysts now have more techniques and reach than ever, and as incidents of cybercrime increase, this isn’t an area that businesses should be scrimping on.
According to PwC’s Global Economic Crime and Fraud Survey 2022, 46 per cent of organisations surveyed reported experiencing fraud or financial crime over the last 24 months and tech, media and telecommunications businesses appeared to have taken the brunt. Findings showed that nearly two-thirds of this group experienced some form of fraud, the highest incidence of any industry.
The ONS also recently released stats showing that fraud offences increased by 25 per cent in 2021 (to 4.5 million offences) compared with the year ending March 2020. Indeed, the proportion of these incidents that were cyber-related increased to 61 per cent up from 53 per cent.
The rise of cyber-fraud is a clear issue and for some businesses such as financial institutions, tackling this by using fraud teams made up of expert Fraud Analysts is the norm. But for others, it may not have been seen as a priority until recently. However, any business which has a growing number of online transactions will become a bigger target for fraudsters and would benefit from a team member able to help minimise the risk.
So, how can fraud analysts help?
Far from wanting to paint a bleak picture, while fraud techniques are evolving and improving, so are anti-fraud efforts. All risks associated with financial crime involve three kinds of countermeasures: identifying and authenticating the customer, monitoring and detecting transaction and behavioural anomalies, and responding to mitigate risks and issues. All of these are carried out by fraud experts, such as Fraud Analysts, armed with ever-evolving technologies and techniques. So, what exactly does a Fraud Analyst do?
Fraud Analysts will track and monitor transactions and activity, identify and trace any suspicious or high-risk transactions, determine if there is improper activity involved, and identify if there is any risk to the organisation or its customers. They are able to digest huge swathes of information and quickly and efficiently prioritise the data that’s important in order to tell a story of fraud or no fraud.
To cope with the speed and scale of online commerce, new technologies such as Machine learning (ML) models have come to the fore. These models have the ability to simulate thousands of scenarios and take over the mundane tasks of sifting through swathes of data in a tiny percentage of the time it would take a human. The systems used by Fraud Analysts will vary based on the industry, but a common example is rule-based expert systems (RBESSs). A very simple implementation of artificial intelligence (AI) RBESSs are used to detect fraud by calculating a risk score based on users’ behaviours, such as repeated log-in attempts or ‘too-quick-for-being-human’ operations. Based on the risk score, the rules deliver a final decision on each analysed transaction, therefore blocking it, accepting it, or putting it on hold for analyst’s revision. The rules can be easily updated over time, or new rules can be inserted following specific needs to address new threats.
This method has proved very effective in mitigating fraud risks and discovering well-known fraud patterns. That said, rule-based fraud detection solutions have demonstrated that they can’t always keep pace with the increasingly sophisticated techniques adopted by fraudsters, without regular updates and expert use.
Machines also cannot mimic human traits like intuition. People can detect if things aren’t right even if they have not seen them before. It’s an instinct not yet successfully trained into machines. Therefore, new trends are much better pursued by an analyst and then a machine can be trained to stop future occurrences. A well-implemented ML system will free up precious time for an analyst to perform these more productive tasks.
A non-stop process
So, your Fraud Analyst has now set up a new ML system to identify fraudulent activity and is also looking for new trends that fraudsters may be trying – now what? Fraud Analysts never sit still. Their job is not a one-time fix but one of constant evolution and refinement. Their role involves identifying weaknesses in systems and continually looking for opportunities for improvement, such as recommending anti-fraud processes to detect new patterns or new software tools to help with reporting. Their finger is always on the pulse of emerging developments and will ensure your company remains protected against current risks.
Not only is this aspect part of the job description, but it is also to some extent inherent to their nature. Fraud Analysts tend to be curious, have a strong attention to granular detail, as well as an inclination towards problem-solving. Leaving no stone unturned is part of their makeup. This analytical skillset will dig out any problems that are there – which will unfortunately then require you to fix them (sorry!) – but it is far better to be aware of any weaknesses now. The majority of companies only realise their shortcomings when it is already too late. Ultimately it is better to be safe than sorry.
A Fraud Analyst not only helps to protect businesses against creative cyber criminals but will also give owners reassurance as they look to grow and thrive unimpeded.
If you are looking for a complete recruitment solution across the breadth of Data & Analytics disciplines to build out a robust Data & Analytics function, get in touch with one of our expert consultants here.
Looking for a new role? Take a look at our latest Fraud Analyst jobs.

Data Science Interview Questions: What The Experts Say | Harnham Recruitment post
+
Our friends at Data Science Dojo have compiled a list of 101 actual Data Science interview questions that have been asked between 2016-2019 at some of the largest recruiters in the Data Science industry – Amazon, Microsoft, Facebook, Google, Netflix, Expedia, etc. Data Science is an interdisciplinary field and sits at the intersection of computer science, statistics/mathematics, and domain knowledge. To be able to perform well, one needs to have a good foundation in not one but multiple fields, and it reflects in the interview. They’ve divided the questions into six categories: Machine LearningData AnalysisStatistics, Probability, and MathematicsProgrammingSQLExperiential/Behavioural QuestionsOnce you’ve gone through all the questions, you should have a good understanding of how well you’re prepared for your next Data Science interview.
Machine LearningAs one will expect, Data Science interviews focus heavily on questions that help the company test your concepts, applications, and experience on machine learning. Each question included in this category has been recently asked in one or more actual Data Science interviews at companies such as Amazon, Google, Microsoft, etc. These questions will give you a good sense of what sub-topics appear more often than others. You should also pay close attention to the way these questions are phrased in an interview. Explain Logistic Regression and its assumptions.Explain Linear Regression and its assumptions.How do you split your data between training and validation?Describe Binary Classification.Explain the working of decision trees.What are different metrics to classify a dataset?What’s the role of a cost function?What’s the difference between convex and non-convex cost function?Why is it important to know bias-variance trade off while modeling?Why is regularisation used in machine learning models? What are the differences between L1 and L2 regularisation?What’s the problem of exploding gradients in machine learning?Is it necessary to use activation functions in neural networks?In what aspects is a box plot different from a histogram?What is cross validation? Why is it used?Can you explain the concept of false positive and false negative?Explain how SVM works.While working at Facebook, you’re asked to implement some new features. What type of experiment would you run to implement these features?What techniques can be used to evaluate a Machine Learning model?Why is overfitting a problem in machine learning models? What steps can you take to avoid it?Describe a way to detect anomalies in a given dataset.What are the Naive Bayes fundamentals?What is AUC – ROC Curve?What is K-means?How does the Gradient Boosting algorithm work?Explain advantages and drawbacks of Support Vector Machines (SVM).What is the difference between bagging and boosting?Before building any model, why do we need the feature selection/engineering step?How to deal with unbalanced binary classification?What is the ROC curve and the meaning of sensitivity, specificity, confusion matrix?Why is dimensionality reduction important?What are hyperparameters, how to tune them, how to test and know if they worked for the particular problem?How will you decide whether a customer will buy a product today or not given the income of the customer, location where the customer lives, profession, and gender? Define a machine learning algorithm for this.How will you inspect missing data and when are they important for your analysis?How will you design the heatmap for Uber drivers to provide recommendation on where to wait for passengers? How would you approach this?What are time series forecasting techniques?How does a logistic regression model know what the coefficients are?Explain Principle Component Analysis (PCA) and it’s assumptions.Formulate Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) techniques.What are neural networks used for?40. Why is gradient checking important?Is random weight assignment better than assigning same weights to the units in the hidden layer?How to find the F1 score after a model is trained?How many topic modeling techniques do you know of? Explain them briefly.How does a neural network with one layer and one input and output compare to a logistic regression?Why Rectified Linear Unit/ReLU is a good activation function?When using the Gaussian mixture model, how do you know it’s applicable?If a Product Manager says that they want to double the number of ads in Facebook’s Newsfeed, how would you figure out if this is a good idea or not?What do you know about LSTM?Explain the difference between generative and discriminative algorithms.Can you explain what MapReduce is and how it works? If the model isn’t perfect, how would you like to select the threshold so that the model outputs 1 or 0 for label?Are boosting algorithms better than decision trees? If yes, why?What do you think are the important factors in the algorithm Uber uses to assign rides to drivers?How does speech synthesis works?
Data AnalysisMachine Learning concepts are not the only area in which you’ll be tested in the interview. Data pre-processing and data exploration are other areas where you can always expect a few questions. We’re grouping all such questions under this category. Data Analysis is the process of evaluating data using analytical and statistical tools to discover useful insights. Once again, all these questions have been recently asked in one or more actual Data Science interviews at the companies listed above. What are the core steps of the data analysis process?How do you detect if a new observation is an outlier?Facebook wants to analyse why the “likes per user and minutes spent on a platform are increasing, but total number of users are decreasing”. How can they do that?If you have a chance to add something to Facebook then how would you measure its success?If you are working at Facebook and you want to detect bogus/fake accounts. How will you go about that?What are anomaly detection methods?How do you solve for multicollinearity?How to optimise marketing spend between various marketing channels?What metrics would you use to track whether Uber’s strategy of using paid advertising to acquire customers works?What are the core steps for data preprocessing before applying machine learning algorithms?How do you inspect missing data?How does caching work and how do you use it in Data Science?
Statistics, Probability and MathematicsAs we’ve already mentioned, Data Science builds its foundation on statistics and probability concepts. Having a strong foundation in statistics and probability concepts is a requirement for Data Science, and these topics are always brought up in data science interviews. Here is a list of statistics and probability questions that have been asked in actual Data Science interviews.How would you select a representative sample of search queries from 5 million queries?Discuss how to randomly select a sample from a product user population.What is the importance of Markov Chains in Data Science?How do you prove that males are on average taller than females by knowing just gender or height.What is the difference between Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP)?What does P-Value mean?Define Central Limit Theorem (CLT) and it’s application?There are six marbles in a bag, one is white. You reach in the bag 100 times. After drawing a marble, it is placed back in the bag. What is the probability of drawing the white marble at least once?Explain Euclidean distance.Define variance.How will you cut a circular cake into eight equal pieces?What is the law of large numbers?How do you weigh nine marbles three times on a balance scale to select the heaviest one?You call three random friends who live in Seattle and ask each independently if it’s raining. Each of your friends has a 2/3 chance of telling you the truth and a 1/3 chance of lying. All three say “yes”. What’s the probability it’s actually raining?Explain a probability distribution that is not normal and how to apply that?You have two dice. What is the probability of getting at least one four? Also find out the probability of getting at least one four if you have n dice.Draw the curve log(x+10)
ProgrammingWhen you appear for a data science interview your interviewers are not expecting you to come up with a highly efficient code that takes the lowest resources on computer hardware and executes it quickly. However, they do expect you to be able to use R, Python, or SQL programming languages so that you can access the data sources and at least build prototypes for solutions.You should expect a few programming/coding questions in your data science interviews. You interviewer might want you to write a short piece of code on a whiteboard to assess how comfortable you are with coding, as well as get a feel for how many lines of codes you typically write in a given week. Here are some programming and coding questions that companies like Amazon, Google, and Microsoft have asked in their Data Science interviews. Write a function to check whether a particular word is a palindrome or not.Write a program to generate Fibonacci sequence.Explain about string parsing in R languageWrite a sorting algorithm for a numerical dataset in Python.Coding test: moving average Input 10, 20, 30, 10, … Output: 10, 15, 20, 17.5, …Write a Python code to return the count of words in a stringHow do you find percentile? Write the code for itWhat is the difference between – (i) Stack and Queue and (ii) Linked list and Array?
Structured Query Language (SQL)Real-world data is stored in databases and it ‘travels’ via queries. If there’s one language a Data Science professional must know, it’s SQL – or “Structured Query Language”. SQL is widely used across all job roles in Data Science and is often a ‘deal-breaker’. SQL questions are placed early on in the hiring process and used for screening. Here are some SQL questions that top companies have asked in their Data Science interviews. How would you handle NULLs when querying a data set?How will you explain JOIN function in SQL in the simplest possible way?Select all customers who purchased at least two items on two separate days from Amazon.What is the difference between DDL, DML, and DCL?96. Why is Database Normalisation Important?What is the difference between clustered and non-clustered index?
Situational/Behavioural QuestionsCapabilities don’t necessarily guarantee performance. It’s for this reason employers ask you situational or behavioural questions in order to assess how you would perform in a given situation. In some cases, a situational or behavioural question would force you to reflect on how you behaved and performed in a past situation. A situational question can help interviewers in assessing your role in a project you might have included in your resume, can reveal whether or not you’re a team player, or how you deal with pressure and failure. Situational questions are no less important than any of the technical questions, and it will always help to do some homework beforehand. Recall your experience and be prepared! Here are some situational/behavioural questions that large tech companies typically ask: What was the most challenging project you have worked on so far? Can you explain your learning outcomes?According to your judgement, does Data Science differ from Machine Learning?If you’re faced with Selection Bias, how will you avoid it?How would you describe Data Science to a Business Executive?
If you’re looking for new Data Science role, you can find our latest opportunities here. This article was written by Tooba Mukhtar and Rahim Rasool for Data Science Jojo. It has been republished with permission. You can view the original article, which includes answers to the above questions here.

Keepers of the Data Kingdom: the Analytics Engineer | Harnham US Recruitment post
+
If it seems the Data world is drilling down further into niche specialities, you’re right. Considering the swathes of information sent and received on a day-by-day, minute-by-minute, and second-by-second basis, is it any wonder? The sheer volume, depending on your business and what you want to know, requires not just a Data team, but must now include someone with a particular skillset, including the tech-savvy analyst who can speak to the executive team.So, who holds it all together? These swathes of information. Who organizes the information in a cohesive order, so anyone with a map, can make their own analyses? Enter the Analytics Engineer.What Makes an Analytics Engineer an Analytics Engineer?Though it’s a rather new speciality within the Data Scientist scope—think Machine Learning Engineer, Software Engineer, Business Analyst, etc—at its core, the definition of an Analytics Engineer is this: “The analytics engineer sits at the intersection of the skill sets of data scientists, analysts, and data engineers. They bring a formal and rigorous software engineering practice to the efforts of analysts and data scientists, and they bring an analytical and business-outcomes mindset to the efforts of data engineering.” Michael Kaminsky, consultant, and former Director of Analytics at Harry’s.In other words, analytics engineers, using best software engineering practices transform data through testing and documentation so that data analysts begin with cleaner data to analyze. As technically savvy as the engineer must be, they must also be able to explain to stakeholders what they’re looking at so they can formulate their own insights. Five Roles and Responsibilities of the Analytics EngineerLike all new niche specialities, there are core responsibilities to consider as well as that of skillsets required to either study to become an Analytics Engineer or to discover if you’re one already. How? Consider the questions you ask, your studies within Data Science, Computer Science, Statistics, and Math, and your balance between technical skills and soft skills. Below are five things to consider when thinking about this role:Programming language experience. Experience with programming languages like R and Python along with strong SQL skills which are at the core of this role. DBT technology knowledge. As the driving force behind the rise of Analytics Engineer as a separate role, it’s imperative anyone interested in pursuing it should have a firm grasp of DBT — the Data Build Tool — that allows the implementation of analytics code using SQL. Data tracking expertise using Git. Data modelling. Clean, tested, and raw data which allow executives and analysts to view their Data, understand it within the database or its warehouse. Data transformation. Analytics Engineers determine what Data is most useful and transform it to ensure it fits related tasks. It’s part of building the foundational layer so businesses can answer their own questions. Key Changes Leading to the Shift in Data RolesWith every technological advancement their comes new players to the field. The difference is here is that the job description already existed. We were only missing a title. But from the traditional Data team to the modern Data team, there are a few key changes that point directly to the rise of this niche field. Cloud warehouses (like Snowflake, Redshift, BigQuery) and the arrival of the DBT the foundational layer which can be built on top of modern data warehouses are the first two that come to mind. Then, the Software-as-a-Service (SaaS) tools like Stitch and Hevo are capable of integrating Data from a variety of sources, and the introduction of tools like Mode and Looker allows anyone interested in drawing insight from Data to do so on their own.Who Needs an Analytics Engineer? Small or Large Businesses?The short answer is it depends. But the general rule follows that while both large and small companies can benefit from having this professional on their staff, there are different things to consider. For example, a small business may be able to find what they need in a single individual. The Analytics Engineer is something of a jack-of-all-trades. Larger businesses, on the other hand, may already have a Data team in place. In this case, an Analytics Engineer adds to your team, something like an additional set of eyes increasing insight drawn from those large swathes of Data we spoke about earlier.So, what’s next for the role of Analytics Engineer? Who knows? The roles of any Data industry professional is constantly evolving. If you’re interested in Analytics Engineering, Machine Learning, Data Science, or Business Intelligence just to name a few, Harnham may have a role for you. Check out our latest Data & Analytics Engineering jobs or contact one of our expert consultants to learn more. For our West Coast Team, contact us at (415) 614 – 4999 or send an email to sanfraninfo@harnham.com. For our Arizona Team, contact us at (602) 562 7011 or send an email to phoenixinfo@harnham.com. For our Mid-West and East Coast teams contact us at (212) 796-6070 or send an email to newyorkinfo@harnham.com.

CAN’T FIND THE RIGHT OPPORTUNITY?
STILL LOOKING?
If you can’t see what you’re looking for right now, send us your CV anyway – we’re always getting fresh new roles through the door.