Clients

What We Do

Put simply, we deliver the most suitable and highly skilled professionals into your Data & Analytics team.

Whether it is Marketing & Insight, Risk Analytics, Data & Technology or Digital Analytics, for the team at Harnham it is key to fully explore and understand the career aspirations of our candidates. We do this whilst developing an in-depth knowledge of each marketplace and its emerging trends, as well as the different types of organisation that we work with and their diverse skill requirements. Only then, once we have the full picture, are we able to deliver resourcing solutions that ensure the very best outcome for all our customers.

HOW We Do IT

We offer our clients a complete recruitment solution across the breadth of Data & Analytics disciplines.

Our original business focus was within UK Data & Analytics but we have expanded to specialise in recruitment across a much wider variety of roles throughout the USA, along with the UK and Europe. Our continued focus on analytics means we gain valuable and current market knowledge along the way, ensuring we can offer you a truly specialist focus, which is second to none within our marketplace. We manage permanent and contract resourcing for all skills within Data & Analytics and, as members of APSCo, you are guaranteed a service based on excellence, best practice, quality, integrity and expertise.

What
sets us apart

We are here to make your recruitment process simple, easy and ultimately successful for everyone.

Our recruitment solutions are determined by tried and tested methods to ensure an effective solution for all concerned. Our focus on establishing networks of skilled individuals, as well as knowing our client businesses, culture and skill requirements guarantees we have a high success rate on our placements. 


Latest Jobs

Salary

£40000 - £55000 per annum + bonus + benefits

Location

Cambridgeshire

Description

A great opportunity to join a Payments FinTech as a Manager with full responsibility of issuing fraud analytics, frameworks and policies.

Salary

500000kr - 650000kr per annum

Location

Oslo

Description

If you are a professional that specializes in the media/marketing sector - specifically market mix modelling,this is an exciting opportunity for you!

Salary

600000kr - 800000kr per annum + BENEFITS

Location

Stockholm

Description

A large consultancy with a diverse and exciting client portfolio is looking for more quantitative analysts to join their ranks!

Salary

£55000 - £60000 per annum + Benefits

Location

Leeds, West Yorkshire

Description

Harnham are working with one of the most successful online brands in Europe who are building a brand new data science capability from the ground-up.

Salary

£75000 - £85000 per annum + competitive benefits package

Location

Cardiff

Description

A challenging but rewarding opportunity as a Credit Risk Manager - Tier 1/Class A Analytics and Banking products!

Salary

£40000 - £50000 per annum + competitive bonus + benefits

Location

London

Description

A data-driven and dynamic financial services company are looking for a fraud analyst to transform their transaction fraud strategy.

Harnham blog & news

With over 10 years experience working solely in the Data & Analytics sector our consultants are able to offer detailed insights into the industry.

Visit our Blogs & News portal or check out our recent posts below.

Data Science Interview Questions: What The Experts Say

Our friends at Data Science Dojo have compiled a list of 101 actual Data Science interview questions that have been asked between 2016-2019 at some of the largest recruiters in the Data Science industry – Amazon, Microsoft, Facebook, Google, Netflix, Expedia, etc.  Data Science is an interdisciplinary field and sits at the intersection of computer science, statistics/mathematics, and domain knowledge. To be able to perform well, one needs to have a good foundation in not one but multiple fields, and it reflects in the interview. They've divided the questions into six categories:  Machine LearningData AnalysisStatistics, Probability, and MathematicsProgrammingSQLExperiential/Behavioural Questions Once you've gone through all the questions, you should have a good understanding of how well you're prepared for your next Data Science interview. Machine Learning As one will expect, Data Science interviews focus heavily on questions that help the company test your concepts, applications, and experience on machine learning. Each question included in this category has been recently asked in one or more actual Data Science interviews at companies such as Amazon, Google, Microsoft, etc. These questions will give you a good sense of what sub-topics appear more often than others. You should also pay close attention to the way these questions are phrased in an interview.  Explain Logistic Regression and its assumptions.Explain Linear Regression and its assumptions.How do you split your data between training and validation?Describe Binary Classification.Explain the working of decision trees.What are different metrics to classify a dataset?What's the role of a cost function?What's the difference between convex and non-convex cost function?Why is it important to know bias-variance trade off while modeling?Why is regularisation used in machine learning models? What are the differences between L1 and L2 regularisation?What's the problem of exploding gradients in machine learning?Is it necessary to use activation functions in neural networks?In what aspects is a box plot different from a histogram?What is cross validation? Why is it used?Can you explain the concept of false positive and false negative?Explain how SVM works.While working at Facebook, you're asked to implement some new features. What type of experiment would you run to implement these features?What techniques can be used to evaluate a Machine Learning model?Why is overfitting a problem in machine learning models? What steps can you take to avoid it?Describe a way to detect anomalies in a given dataset.What are the Naive Bayes fundamentals?What is AUC - ROC Curve?What is K-means?How does the Gradient Boosting algorithm work?Explain advantages and drawbacks of Support Vector Machines (SVM).What is the difference between bagging and boosting?Before building any model, why do we need the feature selection/engineering step?How to deal with unbalanced binary classification?What is the ROC curve and the meaning of sensitivity, specificity, confusion matrix?Why is dimensionality reduction important?What are hyperparameters, how to tune them, how to test and know if they worked for the particular problem?How will you decide whether a customer will buy a product today or not given the income of the customer, location where the customer lives, profession, and gender? Define a machine learning algorithm for this.How will you inspect missing data and when are they important for your analysis?How will you design the heatmap for Uber drivers to provide recommendation on where to wait for passengers? How would you approach this?What are time series forecasting techniques?How does a logistic regression model know what the coefficients are?Explain Principle Component Analysis (PCA) and it's assumptions.Formulate Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) techniques.What are neural networks used for?40. Why is gradient checking important?Is random weight assignment better than assigning same weights to the units in the hidden layer?How to find the F1 score after a model is trained?How many topic modeling techniques do you know of? Explain them briefly.How does a neural network with one layer and one input and output compare to a logistic regression?Why Rectified Linear Unit/ReLU is a good activation function?When using the Gaussian mixture model, how do you know it's applicable?If a Product Manager says that they want to double the number of ads in Facebook's Newsfeed, how would you figure out if this is a good idea or not?What do you know about LSTM?Explain the difference between generative and discriminative algorithms.Can you explain what MapReduce is and how it works? If the model isn't perfect, how would you like to select the threshold so that the model outputs 1 or 0 for label?Are boosting algorithms better than decision trees? If yes, why?What do you think are the important factors in the algorithm Uber uses to assign rides to drivers?How does speech synthesis works? Data Analysis Machine Learning concepts are not the only area in which you'll be tested in the interview. Data pre-processing and data exploration are other areas where you can always expect a few questions. We're grouping all such questions under this category. Data Analysis is the process of evaluating data using analytical and statistical tools to discover useful insights. Once again, all these questions have been recently asked in one or more actual Data Science interviews at the companies listed above.   What are the core steps of the data analysis process?How do you detect if a new observation is an outlier?Facebook wants to analyse why the "likes per user and minutes spent on a platform are increasing, but total number of users are decreasing". How can they do that?If you have a chance to add something to Facebook then how would you measure its success?If you are working at Facebook and you want to detect bogus/fake accounts. How will you go about that?What are anomaly detection methods?How do you solve for multicollinearity?How to optimise marketing spend between various marketing channels?What metrics would you use to track whether Uber's strategy of using paid advertising to acquire customers works?What are the core steps for data preprocessing before applying machine learning algorithms?How do you inspect missing data?How does caching work and how do you use it in Data Science? Statistics, Probability and Mathematics As we've already mentioned, Data Science builds its foundation on statistics and probability concepts. Having a strong foundation in statistics and probability concepts is a requirement for Data Science, and these topics are always brought up in data science interviews. Here is a list of statistics and probability questions that have been asked in actual Data Science interviews. How would you select a representative sample of search queries from 5 million queries?Discuss how to randomly select a sample from a product user population.What is the importance of Markov Chains in Data Science?How do you prove that males are on average taller than females by knowing just gender or height.What is the difference between Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP)?What does P-Value mean?Define Central Limit Theorem (CLT) and it's application?There are six marbles in a bag, one is white. You reach in the bag 100 times. After drawing a marble, it is placed back in the bag. What is the probability of drawing the white marble at least once?Explain Euclidean distance.Define variance.How will you cut a circular cake into eight equal pieces?What is the law of large numbers?How do you weigh nine marbles three times on a balance scale to select the heaviest one?You call three random friends who live in Seattle and ask each independently if it's raining. Each of your friends has a 2/3 chance of telling you the truth and a 1/3 chance of lying. All three say "yes". What's the probability it's actually raining? Explain a probability distribution that is not normal and how to apply that?You have two dice. What is the probability of getting at least one four? Also find out the probability of getting at least one four if you have n dice.Draw the curve log(x+10) Programming When you appear for a data science interview your interviewers are not expecting you to come up with a highly efficient code that takes the lowest resources on computer hardware and executes it quickly. However, they do expect you to be able to use R, Python, or SQL programming languages so that you can access the data sources and at least build prototypes for solutions. You should expect a few programming/coding questions in your data science interviews. You interviewer might want you to write a short piece of code on a whiteboard to assess how comfortable you are with coding, as well as get a feel for how many lines of codes you typically write in a given week.  Here are some programming and coding questions that companies like Amazon, Google, and Microsoft have asked in their Data Science interviews.  Write a function to check whether a particular word is a palindrome or not.Write a program to generate Fibonacci sequence.Explain about string parsing in R languageWrite a sorting algorithm for a numerical dataset in Python.Coding test: moving average Input 10, 20, 30, 10, ... Output: 10, 15, 20, 17.5, ...Write a Python code to return the count of words in a stringHow do you find percentile? Write the code for itWhat is the difference between - (i) Stack and Queue and (ii) Linked list and Array? Structured Query Language (SQL) Real-world data is stored in databases and it ‘travels’ via queries. If there's one language a Data Science professional must know, it's SQL - or “Structured Query Language”. SQL is widely used across all job roles in Data Science and is often a ‘deal-breaker’. SQL questions are placed early on in the hiring process and used for screening. Here are some SQL questions that top companies have asked in their Data Science interviews.  How would you handle NULLs when querying a data set?How will you explain JOIN function in SQL in the simplest possible way?Select all customers who purchased at least two items on two separate days from Amazon.What is the difference between DDL, DML, and DCL?96. Why is Database Normalisation Important?What is the difference between clustered and non-clustered index? Situational/Behavioural Questions Capabilities don’t necessarily guarantee performance. It's for this reason employers ask you situational or behavioural questions in order to assess how you would perform in a given situation. In some cases, a situational or behavioural question would force you to reflect on how you behaved and performed in a past situation. A situational question can help interviewers in assessing your role in a project you might have included in your resume, can reveal whether or not you're a team player, or how you deal with pressure and failure. Situational questions are no less important than any of the technical questions, and it will always help to do some homework beforehand. Recall your experience and be prepared!  Here are some situational/behavioural questions that large tech companies typically ask:    What was the most challenging project you have worked on so far? Can you explain your learning outcomes?According to your judgement, does Data Science differ from Machine Learning?If you're faced with Selection Bias, how will you avoid it?How would you describe Data Science to a Business Executive? If you're looking for new Data Science role, you can find our latest opportunities here.  This article was written by Tooba Mukhtar and Rahim Rasool for Data Science Jojo. It has been republished with permission. You can view the original article, which includes answers to the above questions here. 

MeasureCamp Berlin

MeasureCamp Berlin: A Preview

In preparation for this year's MeasureCamp Berlin, we sat down with Benjamin Bock, communications lead, to discuss what to expect, as well as his thoughts on the industry in general. Here's what he had to say: Can you explain MeasureCamp for people who haven’t been yet? MeasureCamp is an open, free-to-attend analytics 'un-conference' made by analytics professionals for analytics professionals (and everyone who wants to get there) around the globe. In that sense, it’s different to any conference you know of. Our schedule is created on the day of the event, and our speakers are fellow attendees. Listen to talks, give a talk, and discuss topics that really tickle your fancy. What can we expect at MeasureCamp Berlin this year? Let’s begin with what you can’t and never will expect at MeasureCamp Berlin: Sales pitch presentations. We’ve all been there… you are visiting a fancy, expensive conference and all you get is Heads of 'This n’ That' talking about what their team did, what they spent money on and that you should buy Product X to be as Data-driven as them (mind the cynicism). At MeasureCamp you can expect talks and discussion rounds by around 150 fellow experts, who all know the daily adventures of cleaning Data, setting up analytics or debugging tracking code or running mind-bending analysis first hand.  What is your best tip for someone that has never been at MeasureCamp before? Don’t rush it! MeasureCamp is about mingling with the analytics community as much as it is about the talks and discussion rounds. Pick a few talks that really interest you and use the rest of the day to get to know other attendees. Our awesome sponsors are also more than happy to talk to you. What is the best advice you got last year at MeasureCamp? On a personal level, I was able to get some really good advice when it came to data privacy topics. GDPR was still fairly fresh and nobody really knew if what they had done was actually enough to not get into trouble. That’s the kind of advice you only get if you have the chance to talk to other professionals face to face. On another note, what are the most sought-after skills and technologies currently used? I can only speak of my experience here. On a hard skill level and depending on the individual role, you need a solid understanding of web technologies (JavaScript, HTML, CSS) and tag managing systems to be able to implement tracking (plus some knowledge in mobile development when your focus lies on apps). When it comes to analysing and visualising Data, you should understand the tool you are working with and its underlying Data-structures. Being able to retrieve tool-agnostic Data with SQL and running more sophisticated calculations (e.g. with Python) has become more and more important over the last few years. But there are some softer skills, that should not be overlooked as well. As an analytics professional, you should never assume that your knowledge and language are common ground. You need to be a strong communicator, who is able to explain complicated concepts broken down to the absolute basics. In your opinion, what will be the biggest challenge in digital analytics in the next year? Two weeks ago, I would have answered “bringing web and app Data together”. Now that we know Google is working on that topic, it’s still a challenge, but one I am happy to tackle in the coming year. Digital Analytics is constantly changing. What do you expect to be the most talked about topic at MeasureCamp this year? As a Tracking Specialist with a focus on Google products, I’d love to hear some talks about Google Tag Manager Custom Templates. But my top guess is, that the newly released Apps and Web properties beta for Google Analytics will be the talk of the hour. MeasureCamp Berlin is an open and free-to-attend 'un-conference', taking place this year on the 28th of September. The final batch of tickets will be released on the 21st of August at 03:00 PM (CEST). Click here for more information and to get hold of your place. 

Recently Viewed jobs